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Suspension of particles

Fluid Particles

Two-phase system:
solid particles in a liquid.

Blood

Slurries

Sediments
in water
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Suspensions as effective fluids
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Ref. Maron and Pierce (1956)
See also Guazzelli and Pouliquen (2018)

▶ Particle-fluid and particle-particle
interactions contribute to the suspension
stress.

▶ The suspension viscosity 𝜂s increases with
the particle volume fraction 𝜙.

▶ Non-Newtonian: shear thinning and
thickening, and normal stress differences.

𝜙 = Volume with particles
Total volume
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Simple shear flows in the Stokes regime
𝑦

𝑥

𝒖 = ̇𝛾𝑦𝒙̂

𝑎
𝑦p

𝒖p = ̇𝛾𝑦p𝒙̂

▶ Re = 0. No inertia. All velocities result from balances of forces.

▶ Local fluid velocity 𝒖 depends linearly on 𝑦 with a shear rate ̇𝛾.

▶ Laminar flows: locally a shear flow with ̇𝛾 varying with position.

▶ Force-free spheres move with the velocity corresponding to its center position.

Time scale: 1/ ̇𝛾

Length scale: 𝑎
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Particle pair interactions
𝑦

𝑥

𝒖 = ̇𝛾𝑦𝒙̂

𝑎
𝑦i

2𝑎

reversible
𝑦f

▶ Two particles in different streamlines can get very close and have strong
interactions (i.e. a collision).

▶ Hydrodynamic interactions (mediated by the fluid) are reversible under shear
reversal and the spheres return to their original streamlines (𝑦f = 𝑦i).

▶ Other interactions may not have this property, in particular...
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Irreversible pair interactions
𝑦

𝑥

𝒖 = ̇𝛾𝑦𝒙̂

𝑎
𝑦i

2𝑎

reversible

irreversible 𝑦f

▶ Real spheres have rough surfaces. Asperity size ∼ 10−4 𝑎.

▶ Particle surfaces can approach enough to make contact.

▶ Contact forces prevent approach, but not separation: they are irreversible.
→ Irreversible trajectories (𝑦f > 𝑦i).

contact?

20 µm
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Irreversible behavior: diffusion and migration
𝑦

Flux
𝜕𝑦𝛾̇ > 0

𝑦

Flux
𝜕𝑦𝜙 < 0

▶ Irreversible collisions → Particle self-diffusivity 𝐷 = 𝐷̂(𝜙) ̇𝛾𝑎2, d𝐷̂
d𝜙 > 0.

▶ Shear-induced migration: particles tend to migrate following the descending
gradients of ̇𝛾 and 𝜙.

▶ Non-uniform particle distribution and suspension properties (e.g. 𝜂s).
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Previous work and motivation

Flow 𝑊 = 10 mm

∼
1m

m

𝑊 = 10 mm

Uniform illumination

Camera
PMMA spheres

40 µm

Oscillatory flow

Image intensity = 𝑓(𝜙)

Experiments by Roht et al. (EPL 2018):
▶ Suspension of spheres, 𝜙bulk = 0.35
▶ Oscillatory channel flow

(amplitude ≫ particle size)
▶ Re < 1, Pe → ∞

Stripes appear with the oscillations
What is happening inside?
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New experiments and objectives

2𝑏

𝑊

Channel

Laser sheet
PMMA spheres

2𝑎

Oscillatory flow
Camera

▶ Observe individual particles inside the channel.

▶ Determine the particle distribution and velocity field as the instability develops.

▶ Are particle trajectories reversible? How do they organize relative to each other?
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Visualization technique

2𝑏

𝑊

Channel

Laser sheet
PMMA spheres

2𝑎

Oscillatory flow
Camera

▶ Transparent suspension and channel.
▶ PMMA (acrylic) spheres

and channels.
▶ Aqueous solutions as carrier fluids.
▶ Index matching (𝑛f = 𝑛p).

▶ Visualization using fluorescense.
▶ One phase dyed (fluid or particles).
▶ Illumination by a laser plane.

▶ Video analysis to track particles



Introduction Methods Overview Microstructure Instability Influences Conclusions 11

Suspensions used

▶ Monodisperse PMMA spheres.
▶ Diameters 2𝑎 ≈ 40 and 85 µm.
▶ “Large” size ⇒ Non-Brownian, non-colloidal.
▶ 0.2 ≤ 𝜙bulk ≤ 0.4

▶ Newtonian aqueous solutions.
▶ Viscosities 𝜂f ≈ 7.6 (mostly) and 3000 mPa s.
▶ Matching density (𝜌 ≈ 1.19 g/cm3)

⇒ Neutrally-buoyant particles.
▶ Matching index of refraction (𝑛 ≈ 1.49)

⇒ Transparent suspensions.

40 µm

SEM image of 40 µm particles.

Suspension of 85 µm particles illuminated by a light plane.
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Experimental setup

Laser

Camera

Channel

Syringes
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Video of a typical experiment

▶ White: fluorescent fluid.

▶ Black disks: spherical particles (2𝑎 = 85 µm, 𝜙bulk = 0.4).

▶ Channel thickness 2𝑏 = 2 mm.

▶ Square wave in the flow rate. Period 𝑇 = 8 s.
Displacement amplitude 𝐴 = 4.5 mm.

𝑡

𝑥

0 𝑇 /2 𝑇

𝐴

𝑡

𝑄
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A typical experiment in images
𝑡 = 0 𝛾̄ = 0

𝑥
𝑦

2m
m

𝑡 = 14 𝑇 𝛾̄ = 185 Migration

𝑡 = 29 𝑇 𝛾̄ = 385

Instability

𝑡 = 41 𝑇 𝛾̄ = 545
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Profiles after migration and before the instability
Volume fraction
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2𝑎 = 85 µm
2𝑏 = 2 mm

𝜙bulk = 0.40

Newtonian profile

▶ Particles migrate from the walls (𝑦 = ±𝑏) toward the center (𝑦 = 0).
▶ In the center: more particles = larger viscosity.
▶ Flattened velocity profile.

𝑦

Flux
𝜕𝑦𝛾̇ > 0

𝑦

Flux
𝜕𝑦𝜙 < 0
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Profiles after migration and before the instability
Volume fraction
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▶ Shear rate ̇𝛾 = ∣𝜕𝑉𝑥
𝜕𝑦 ∣ maximum near the walls. Nearly zero in the center.

▶ 1/ ̇𝛾 can be used as a local time scale.
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Transient effects of the flow reversals
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▶ After a flow reversal, the particles lose contacts.
▶ Non-uniform viscosity drop.
▶ Transient variation of the velocity profile 𝑉𝑥(𝑦).
▶ No variation of the volume fraction profile 𝜙(𝑦).

Forward flow

contact

Reversed flow
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Transient effects of the flow reversals
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▶ Transient effects become more marked with
increasing 𝜙bulk.

▶ 𝑡𝑉s = average accumulated travelled distance.
𝑉s ≈ 𝑉avg.

Forward flow

contact

Reversed flow
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Microstructure and pair distribution function

𝑥

𝑦 𝒓

𝑎

𝑟𝑦

𝑟𝑥

𝒓
𝜃

𝑉𝑥 ≈ 𝑉𝑥(𝑦) + 𝛾̇(𝑦) 𝑦

▶ We accumulate statistics of the relative positions 𝒓 of
particle pairs to obtain...

▶ 𝑃(𝒙 + 𝒓|𝒙) = probability of finding a particle at
𝒙 + 𝒓 given another one at 𝒙.

▶ Pair distribution function 𝑔(𝒓) = 𝑃(𝒙 + 𝒓|𝒙)/𝑛.
Particle number density 𝑛 ∝ 𝜙.

▶ 𝑔 gives information about the particle microstructure
separately of 𝜙.

▶ 𝜙, ̇𝛾, 𝑔 vary across the thickness (𝑦 coordinate).
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PDF far from the walls and the center
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𝑔(
𝑟 𝑥

,𝑟
𝑦

)

0.42 < 𝑦/𝑏 < 0.51, 𝜙 ≈ 0.40

▶ In a narrow strip with 𝜙 and ̇𝛾 ≈ uniform.

▶ 2D: all considered particles have their
centers in the same 𝑥𝑦 plane.

▶ Quasi-steady state (long enough after
reversal).

▶ White disk: nil probability of pairs with
𝑟 ≲ 2𝑎 (no interpenetration).

▶ Maximum probability for 𝑟 ≈ 2𝑎
(red ring).
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PDF far from the walls and the center
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compression

compression

extension

extension

0.42 < 𝑦/𝑏 < 0.51, 𝜙 ≈ 0.40

▶ Most particle pairs are nearly in contact
(𝑟 ≈ 2𝑎).

▶ Most of them are in compression
(𝑟𝑥𝑟𝑦 < 0).

▶ Depletion of pairs in the extensional
quadrant (𝑟𝑥𝑟𝑦 > 0).

▶ Fore-aft asymmetric PDF due to
irreversible interactions (contacts).

𝑦

𝑥

𝒖 = ̇𝛾𝑦𝒙̂

𝑎
𝑦i

2𝑎

reversible
irreversible 𝑦f
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Agreement with experiments using uniform shear flows
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0.25 < 𝑦/𝑏 < 0.34, 𝜙 ≈ 0.45

Same experiment,
different positions 𝑦.

Different experiments
with uniform 𝜙 and 𝛾̇.
Blanc et al. (2013 J.Rheol.)

▶ The steady microstructure
depends mostly on the local
𝜙.
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Reorganization after a flow reversal
𝑦/𝑏 ≈ 0.30, 𝜙 ≈ 0.45
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𝑟 𝑦
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𝛾 = −0.05
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𝛾 = 0.30

𝑟𝑥/𝑎

𝛾 = 0.57

𝑟𝑥/𝑎

𝛾 = 0.92
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𝛾 = 1.19

𝑟𝑥/𝑎
0

1

2
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𝛾 = 1.61

▶ The anisotropic microstructure depends on the shear direction.

▶ It must reorganize upon flow reversal.

𝛾(𝑦, Δ𝑡) = ∫
Δ𝑡

0
̇𝛾(𝑦, 𝑡′) d𝑡′ = accumulated local deformation after each reversal
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Microstructure anisotropy parameter

𝐴𝑥𝑦 = ⟨ 𝑟𝑥𝑟𝑦
𝑟2𝑥 + 𝑟2𝑦

⟩
𝑟≈2𝑎
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𝑦/𝑏 ≈ 0.81, 𝜙 ≈ 0.35
𝑦/𝑏 ≈ 0.47, 𝜙 ≈ 0.40
𝑦/𝑏 ≈ 0.30, 𝜙 ≈ 0.45
𝑦/𝑏 ≈ 0.21, 𝜙 ≈ 0.50
𝑦/𝑏 ≈ 0.12, 𝜙 ≈ 0.54

𝐴
𝑥𝑦

Local strain, 𝛾

𝑦/𝑏 ≈ 0.30, 𝜙 ≈ 0.45
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▶ 𝐴𝑥𝑦 is one component of a 2D fabric
tensor (Gillissen and Wilson 2018).

▶ 𝐴𝑥𝑦 changes sign uppon shear
reversal.

▶ The characteristic strain decreases
with increasing 𝜙.
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Non-uniformity of the variations after a flow reversal
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Δ𝛾̄ = Δ𝑡 𝑉s/𝑏
−0.65
0.37
0.74
1.8
12

𝐴
𝑥𝑦

𝑦/𝑏

Reversal

▶ Higher 𝜙 toward the center (𝑦 = 0) ⇒ Smaller characteristic strains.
▶ Higher ̇𝛾 toward the walls (𝑦 = 𝑏) ⇒ Faster accumulation of strain.
▶ Non-uniform variation of the suspension properties after each reversal.

Could it be related to the instability?
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Flow instability
induced by oscillations

𝑡 = 14 𝑇 𝛾̄ = 185

𝑡 = 29 𝑇 𝛾̄ = 385
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Volume fraction and velocity fields in the 𝑥𝑦 plane
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Volume fraction and velocity fields in the 𝑥𝑦 plane
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Volume fraction and velocity fields in the 𝑥𝑦 plane
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Volume fraction and velocity fields in the 𝑥𝑦 plane
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Volume fraction and velocity fields in the 𝑥𝑦 plane
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Secondary velocity field in the flow-gradient plane
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Reversal and convection of the patterns
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Long-term evolution of key variables
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𝑏 )

𝜙cen
𝜙avg

Accumulated strain, 𝛾̄ = 𝑡𝑉s/𝑏

Number of oscillations, 𝑡/𝑇
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▶ One point per period, only quasi-steady state information.
▶ 𝜙cen: particle volume fraction near 𝑦 = 0.
▶ 𝐴𝑉𝑦

: normalized amplitude of the secondary flow.
▶ 𝐴𝜙: normalized amplitude of the deformation of the central band.
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▶ One point per period, only quasi-steady state information.
▶ 𝜙cen: particle volume fraction near 𝑦 = 0.
▶ 𝐴𝑉𝑦

: normalized amplitude of the secondary flow.
▶ 𝐴𝜙: normalized amplitude of the deformation of the central band.

Further characterization
using 𝐴𝑉𝑦

( ̄𝛾)
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Influence of the oscillation amplitude for 85 µm particles
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▶ The instability develops with similar strains ̄𝛾 in this range of ̄𝛾0.

▶ Different ̄𝛾0 ⇒ different number of oscillations to reach a given ̄𝛾.
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Influence of the oscillation amplitude for 40 µm particles
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▶ Similar ratio 𝑏/𝑎 ≈ 25, wider range of amplitudes ̄𝛾0.
▶ Slower growth for extreme amplitudes.
▶ In general, faster than the 85 µm particles.
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Influence of the oscillation amplitude for 40 µm particles
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▶ Similar ratio 𝑏/𝑎 ≈ 25, wider range of amplitudes ̄𝛾0.
▶ Slower growth for extreme amplitudes.
▶ In general, faster than the 85 µm particles.

Maybe a difference
in the asperity size?

contact?

20 µm
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Determination of the onset strain and a growth rate
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▶ Fit to log(𝐴𝑉𝑦
) of a piecewise function: constant - linear - constant.

▶ The perturbations become apparent above a global strain ̄𝛾onset.
▶ Then, they grow by a factor 𝜎 per unit of strain.
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Onset strain and growth rate vs oscillation amplitude
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▶ 5 < ̄𝛾0 < 15: ≈ constant grow rates 𝛾 and onset strains ̄𝛾onset (both sizes).
▶ ̄𝛾0 < 5: delayed onset and reduced growth (40 µm).
▶ ̄𝛾0 > 15: delayed onset? and reduced growth (40 µm).
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Onset strain and growth rate vs oscillation amplitude
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Why?
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Interpretation of the measured growth rates

𝛾̄

𝑉avg

0 𝛾̄0

2𝛾̄0

reversal
Forward flow

contact

Reversed flow

▶ Particle contacts → irreversible behavior → instability.

▶ After reversal, particles lose contacts...

▶ ...and recover them after accumulating a strain 𝛾c ∼ 1.



Introduction Methods Overview Microstructure Instability Influences Conclusions 36

Interpretation of the measured growth rates
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𝜎 ̄𝛾0: growth factor during one half oscillation.
▶ ̄𝛾0 < ̄𝛾c: no growth. ̄𝛾c is a threshold.
▶ ̄𝛾0 > 15: another process?
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Interpretation of the measured growth rates
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𝜎 ̄𝛾0: growth factor during one half oscillation.
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▶ ̄𝛾0 > 15: another process?
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Influence of the particle volume fraction
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▶ Lower particle concentration
→ Lower collision rate
→ Slower progress in irreversible processes.

▶ Slight decrease of the maximum amplitude.
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Influence of the particle volume fraction
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no contacts/no growth ▶ ̄𝛾c decreases with 𝜙bulk.
The characteristic strain for microstructure
reorganization decreases with 𝜙 (local).

▶ 𝜎i increases with 𝜙bulk,
maybe like the particle diffusivity.
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Summary

2𝑏

𝑊

Channel

Laser sheet
PMMA spheres

2𝑎

Oscillatory flow
Camera

▶ Experiments with oscillating suspensions inside
narrow channels (Hele-Shaw cells). Re ≈ 0.

▶ Tracking of individual particles.

▶ Instability characterized by perturbations of the
particle concentration and velocity fields periodic
along the flow direction.

𝑡 = 29 𝑇 𝛾̄ = 385

Instability
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Summary
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▶ The instability induces alternating recirculation
rolls, convected and reversed by the main flow.

▶ The amplitude of this secondary flow grows
≈ exponentially with a rate 𝜎.

▶ Threshold oscillation amplitude ̄𝛾c ∼ 1 due to the
loss of particle contacts after each reversal.
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Summary
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0.42 < 𝑦/𝑏 < 0.51, 𝜙 ≈ 0.40
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▶ Microstructure: particle pairs in compression are
more common than in extension (steady regime).

▶ After reversal, the microstructure reorganizes
after accumulating a local strain 𝛾 ∼ 1.

▶ The microstructure influences properties like the
normal stresses.

▶ Its transient and inhomogeneous variations after
reversal may be the keys to explain the instability.
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