

Instability and transport phenomena in oscillating suspensions of non-Brownian particles in confined geometries

Alejandro Adrián GARCÍA

Doctoral thesis in cotutelle between

Universidad de Buenos Aires

Facultad de Ingeniería

Direction: Irene Ippolito

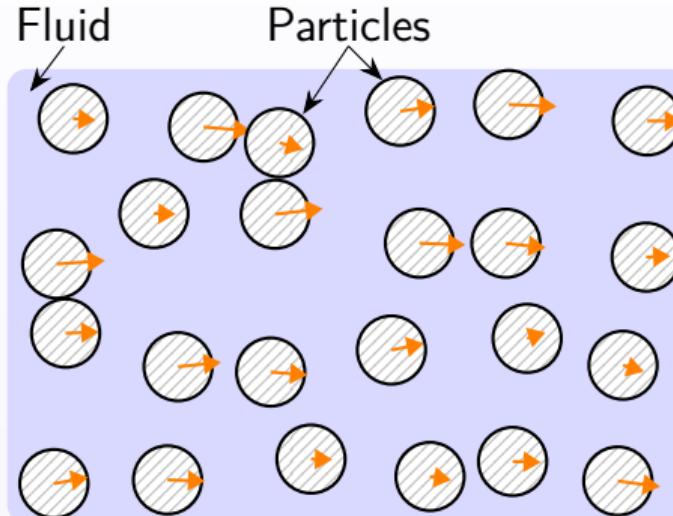
Co-direction: Y. Lucrecia Roht

Université Paris-Saclay

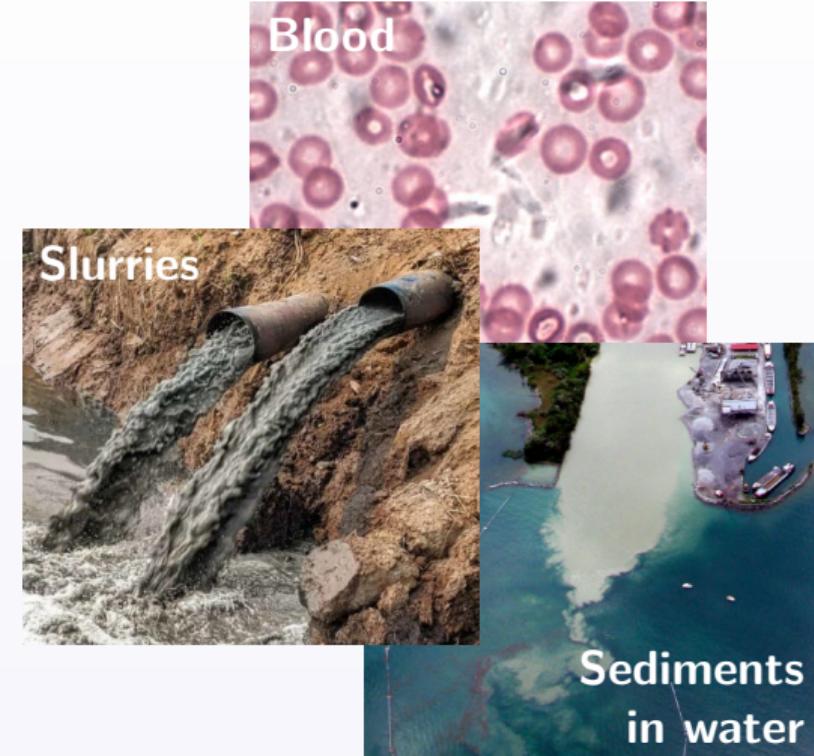
École doctorale SMEMaG

Direction: Georges Gauthier

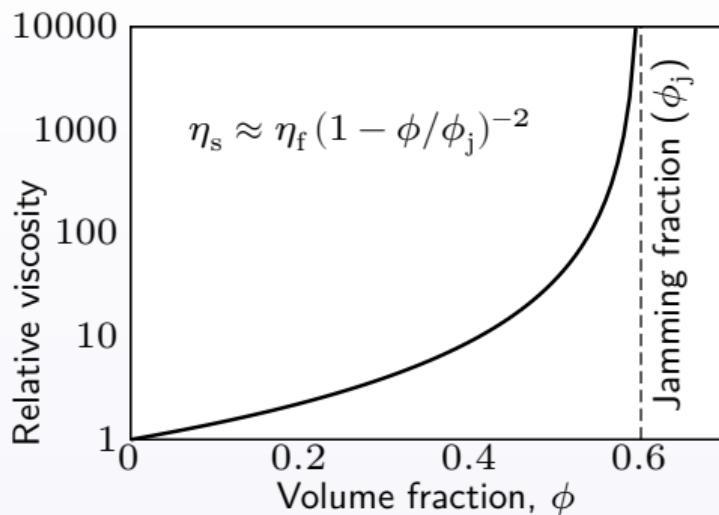
Suspension of particles



Two-phase system:
solid particles in a liquid.



Suspensions as effective fluids



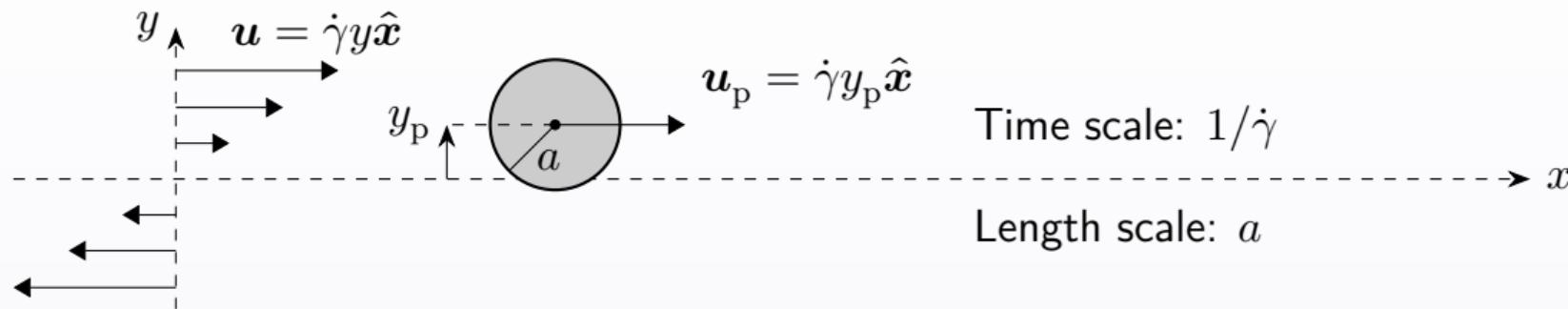
- ▶ Particle-fluid and particle-particle interactions contribute to the suspension stress.
- ▶ The **suspension viscosity** η_s increases with the particle volume fraction ϕ .
- ▶ Non-Newtonian: shear thinning and thickening, and normal stress differences.

Ref. Maron and Pierce (1956)

See also Guazzelli and Pouliquen (2018)

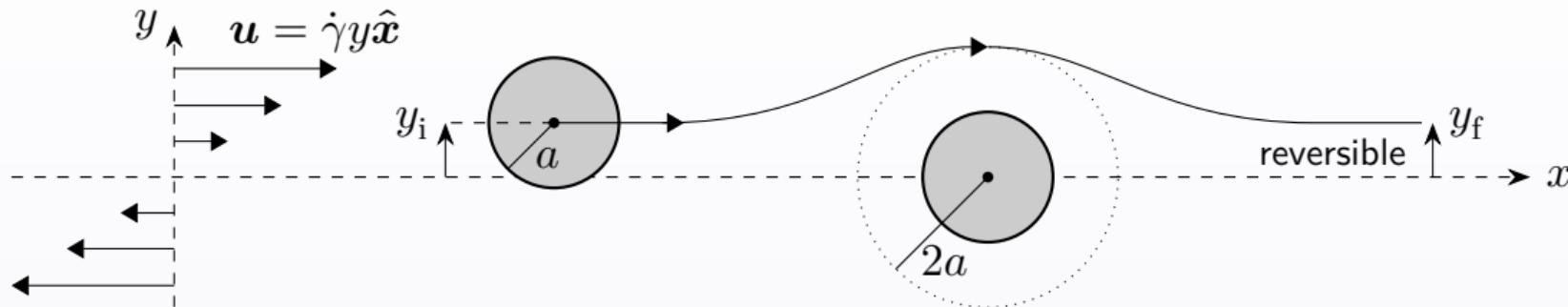
$$\phi = \frac{\text{Volume with particles}}{\text{Total volume}}$$

Simple shear flows in the Stokes regime



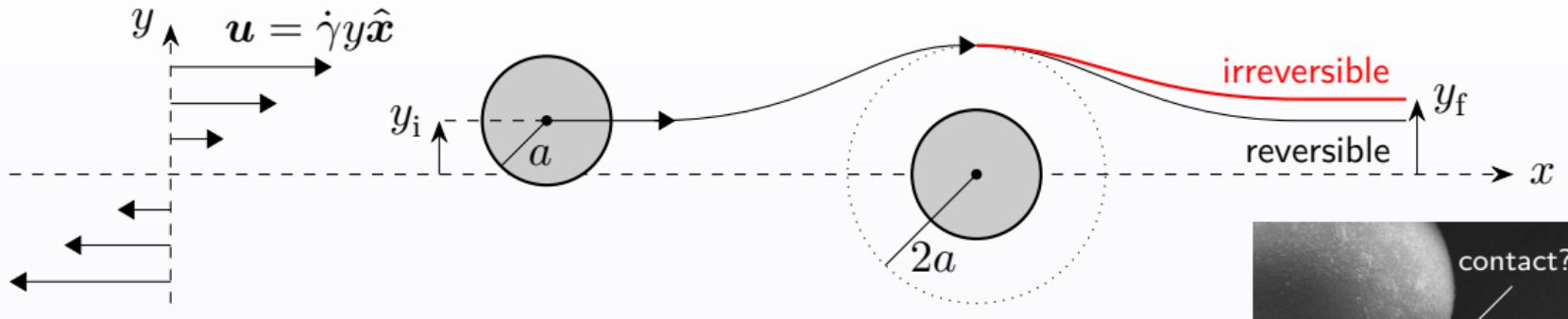
- ▶ $Re = 0$. No inertia. All velocities result from balances of forces.
- ▶ Local fluid velocity u depends linearly on y with a **shear rate** $\dot{\gamma}$.
- ▶ Laminar flows: locally a shear flow with $\dot{\gamma}$ varying with position.
- ▶ Force-free spheres move with the velocity corresponding to its center position.

Particle pair interactions

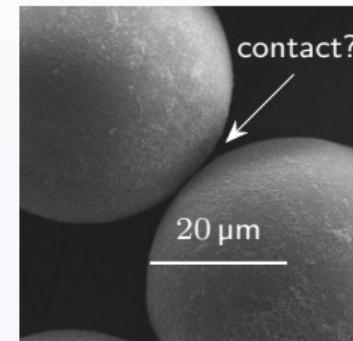


- ▶ Two particles in different streamlines can get very close and have strong interactions (i.e. a **collision**).
- ▶ Hydrodynamic interactions (mediated by the fluid) are **reversible** under shear reversal and the spheres return to their original streamlines ($y_f = y_i$).
- ▶ Other interactions may not have this property, in particular...

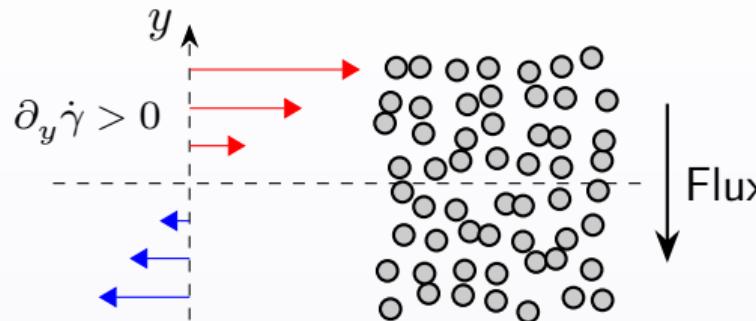
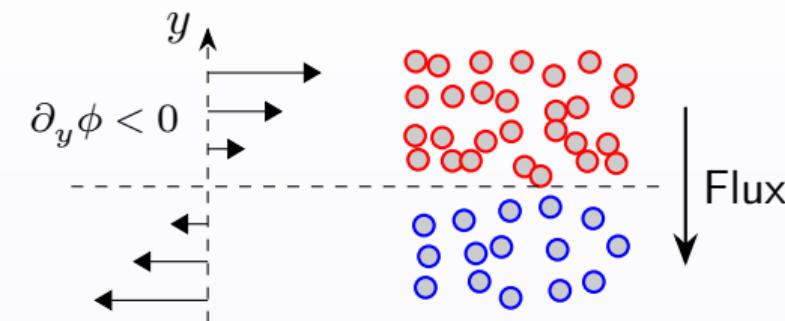
Irreversible pair interactions



- ▶ Real spheres have **rough surfaces**. Asperity size $\sim 10^{-4} a$.
- ▶ Particle surfaces can approach enough to make **contact**.
- ▶ Contact forces prevent approach, but not separation: they are **irreversible**.
→ Irreversible trajectories ($y_f > y_i$).



Irreversible behavior: diffusion and migration



- ▶ Irreversible collisions → Particle self-diffusivity $D = \hat{D}(\phi) \dot{\gamma} a^2$, $\frac{d\hat{D}}{d\phi} > 0$.
- ▶ Shear-induced **migration**: particles tend to migrate following the descending gradients of $\dot{\gamma}$ and ϕ .
- ▶ **Non-uniform** particle distribution and suspension properties (e.g. η_s).

Previous work and motivation

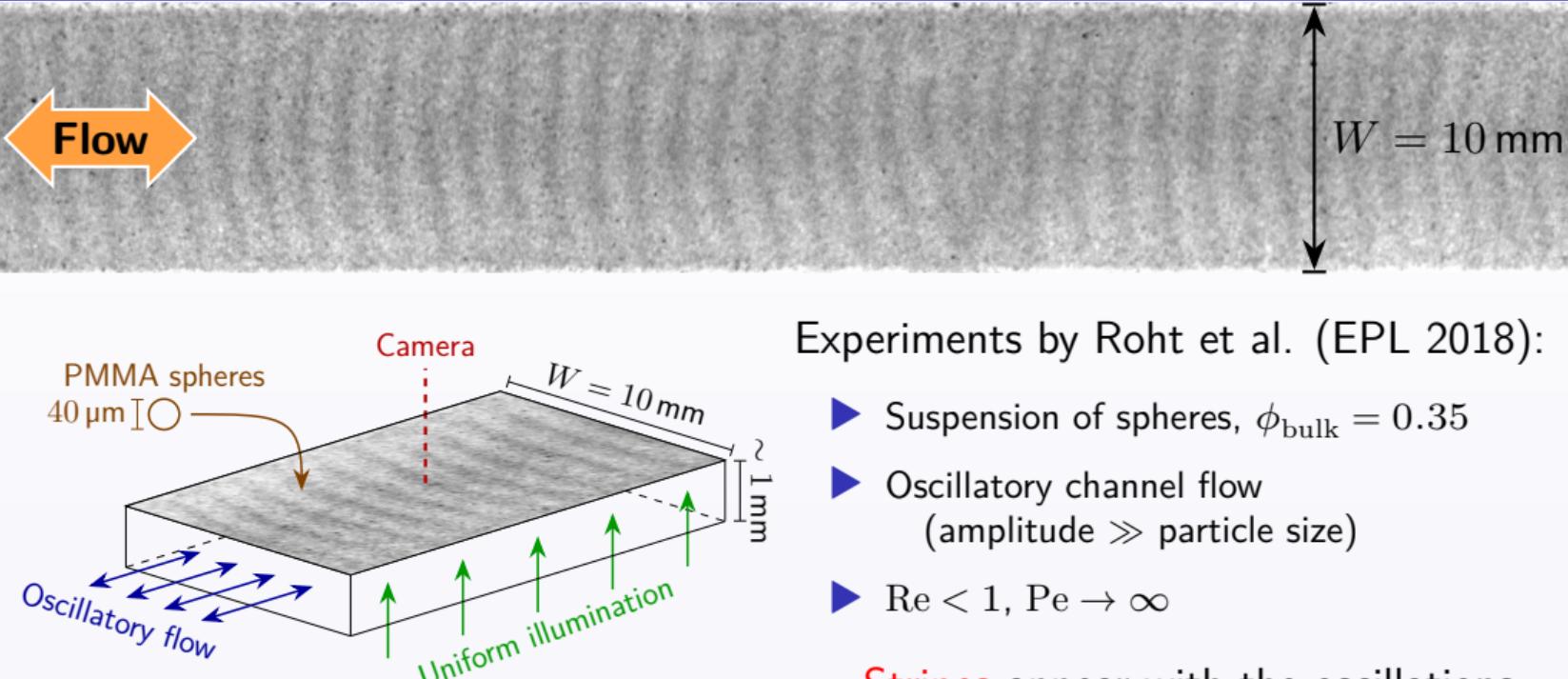


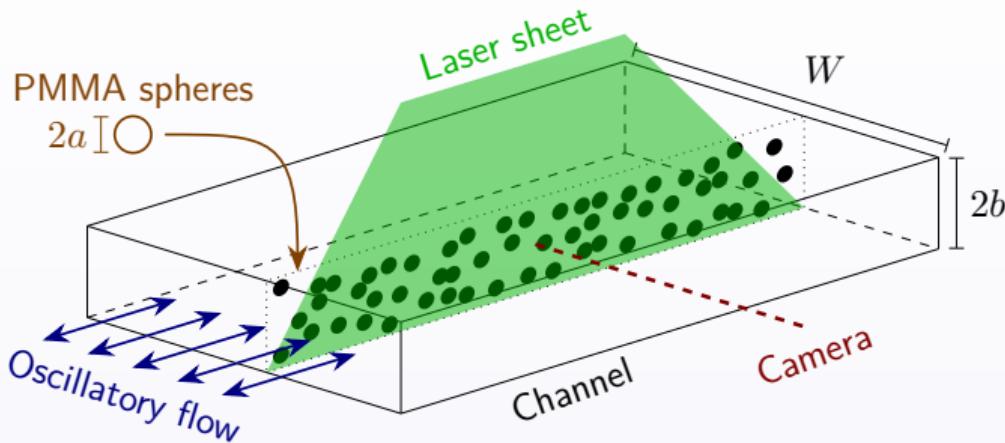
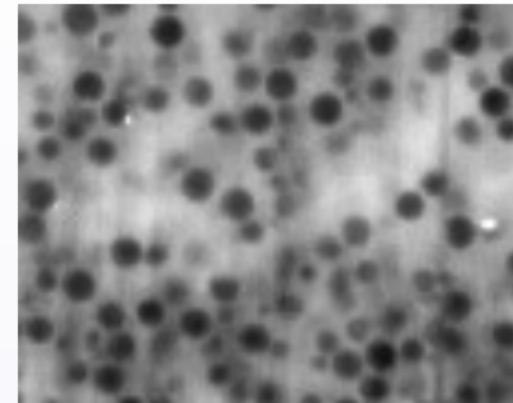
Image intensity = $f(\phi)$

Experiments by Roht et al. (EPL 2018):

- ▶ Suspension of spheres, $\phi_{\text{bulk}} = 0.35$
- ▶ Oscillatory channel flow (amplitude \gg particle size)
- ▶ $\text{Re} < 1$, $\text{Pe} \rightarrow \infty$

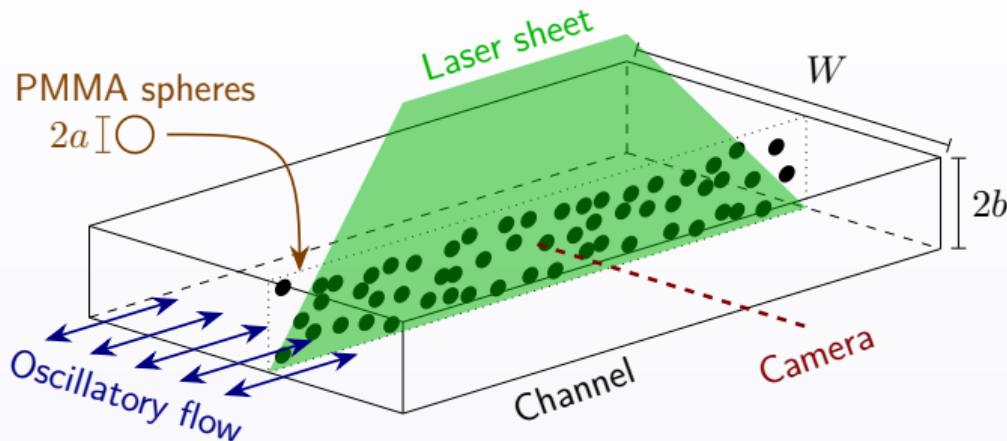
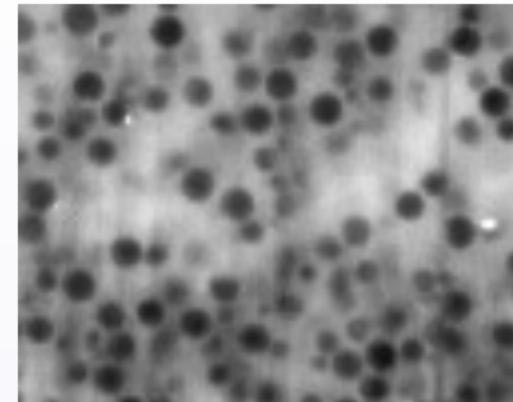
Stripes appear with the oscillations
What is happening inside?

New experiments and objectives



- ▶ Observe individual particles inside the channel.
- ▶ Determine the particle distribution and velocity field as the instability develops.
- ▶ Are particle trajectories reversible? How do they organize relative to each other?

Visualization technique

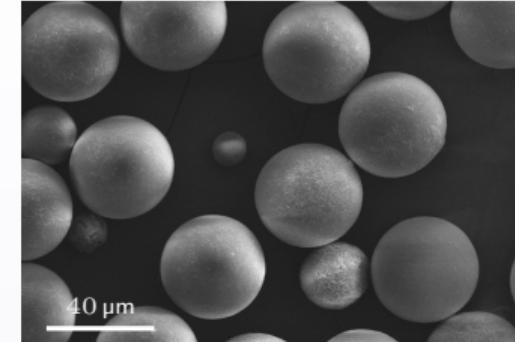


- ▶ Transparent suspension and channel.
 - ▶ PMMA (acrylic) spheres and channels.
 - ▶ Aqueous solutions as carrier fluids.
 - ▶ Index matching ($n_f = n_p$).
- ▶ Visualization using fluorescense.
 - ▶ One phase dyed (fluid or particles).
 - ▶ Illumination by a laser plane.
- ▶ Video analysis to track particles

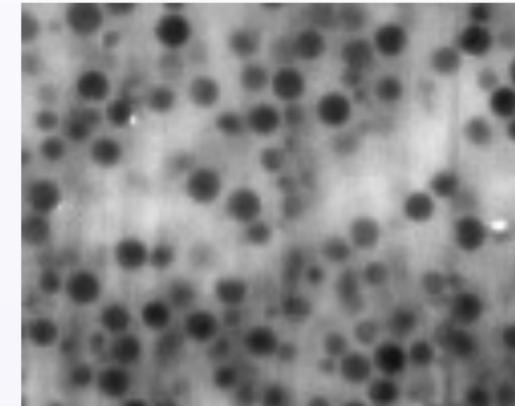
Suspensions used

- ▶ Monodisperse PMMA spheres.
 - ▶ Diameters $2a \approx 40$ and $85 \mu\text{m}$.
 - ▶ “Large” size \Rightarrow Non-Brownian, non-colloidal.
 - ▶ $0.2 \leq \phi_{\text{bulk}} \leq 0.4$

- ▶ Newtonian aqueous solutions.
 - ▶ Viscosities $\eta_f \approx 7.6$ (mostly) and 3000 mPa s .
 - ▶ Matching density ($\rho \approx 1.19 \text{ g/cm}^3$)
 \Rightarrow Neutrally-buoyant particles.
 - ▶ Matching index of refraction ($n \approx 1.49$)
 \Rightarrow Transparent suspensions.

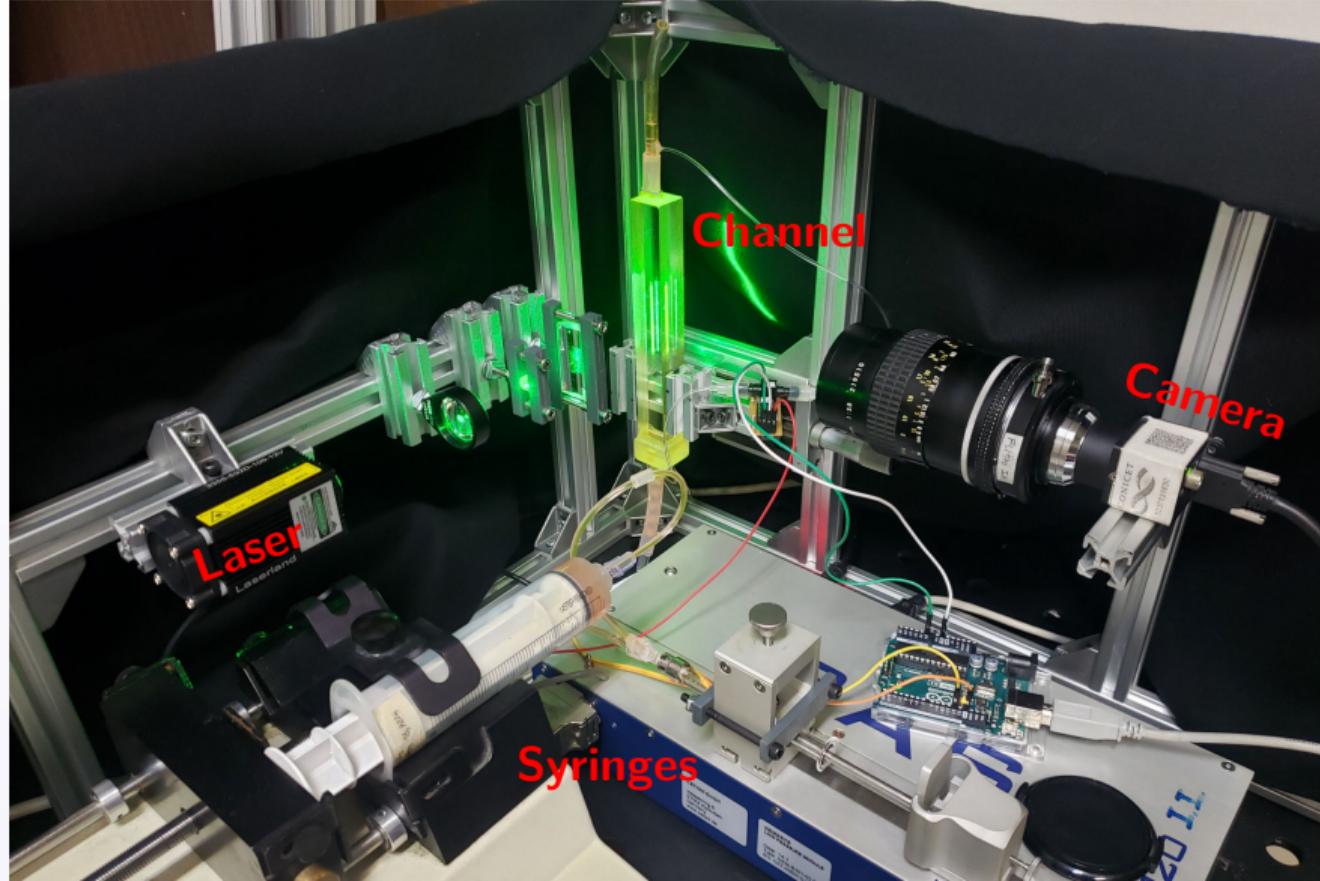


SEM image of $40 \mu\text{m}$ particles.

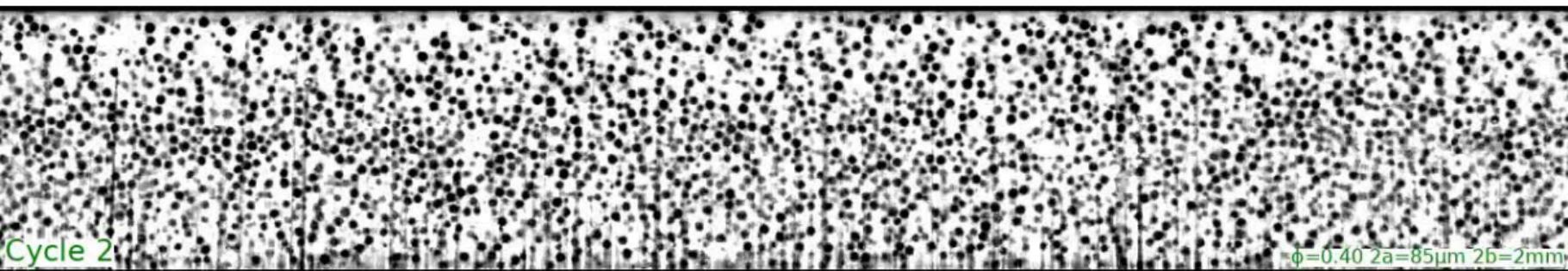


Suspension of $85 \mu\text{m}$ particles illuminated by a light plane.

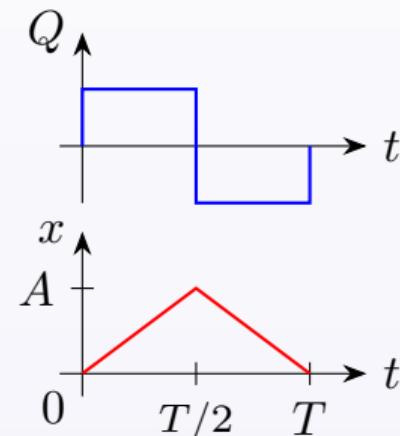
Experimental setup



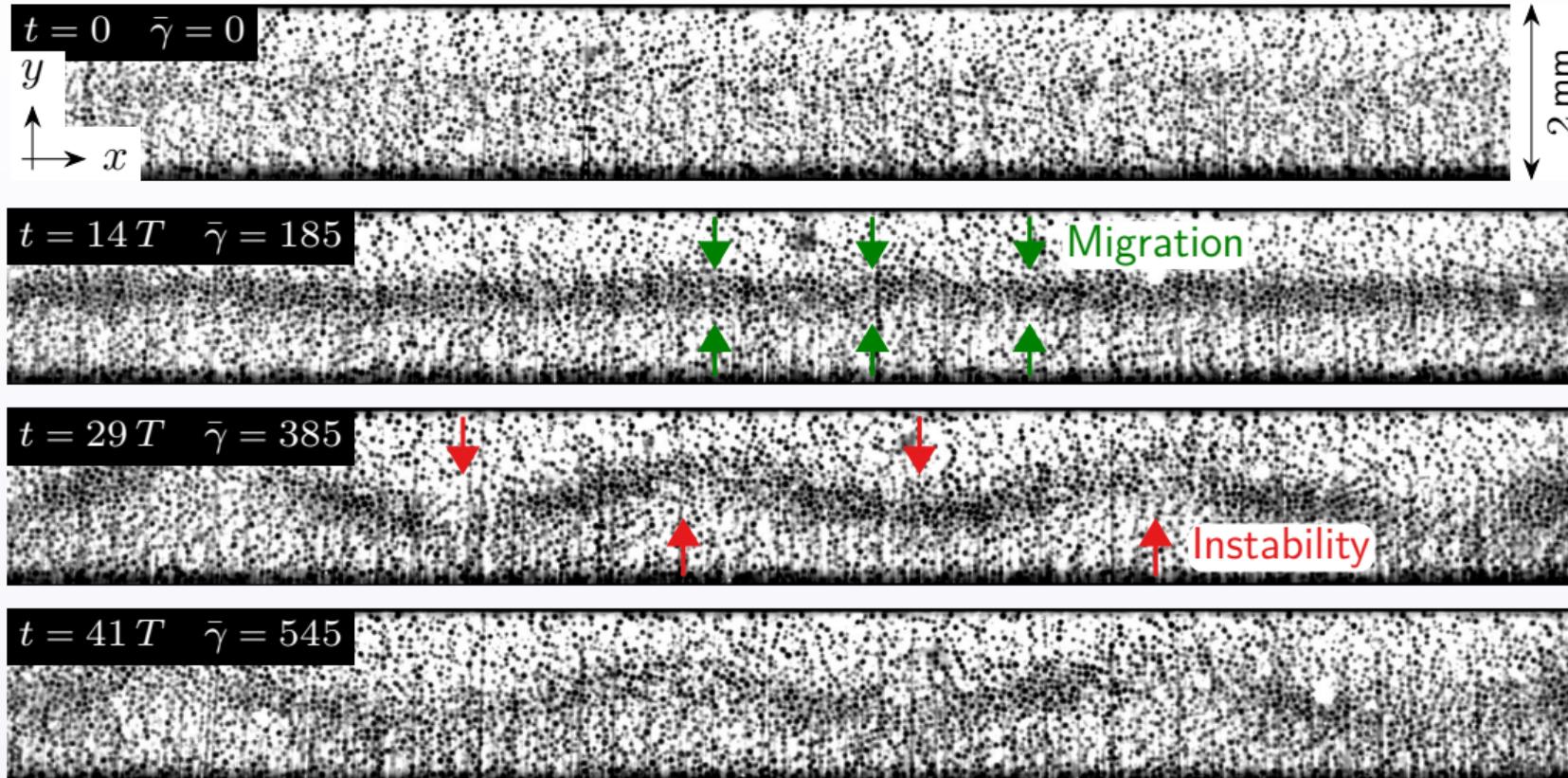
Video of a typical experiment



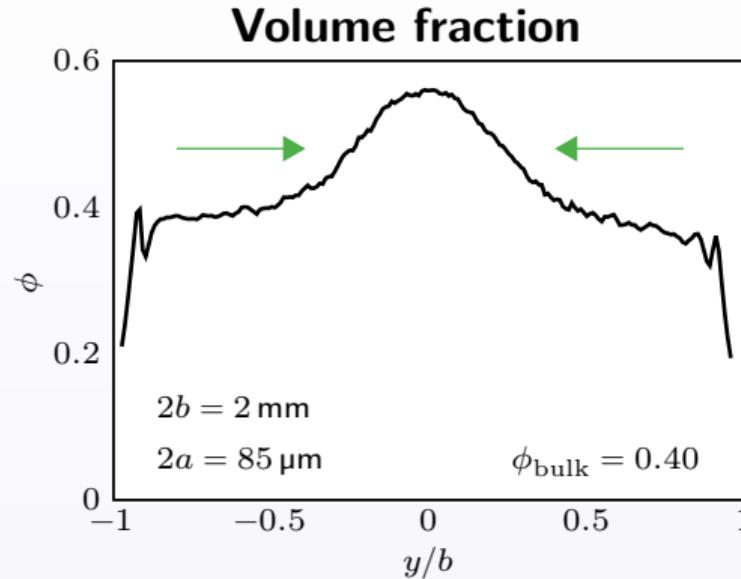
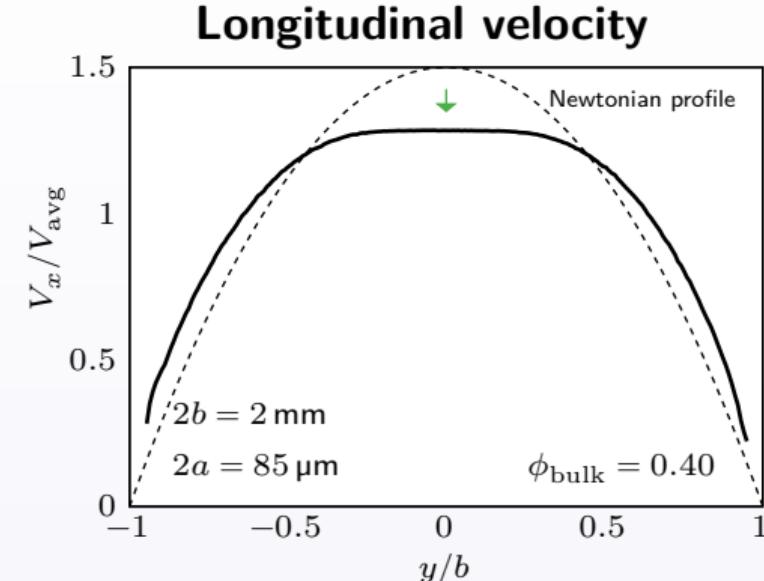
- ▶ White: fluorescent fluid.
- ▶ Black disks: spherical particles ($2a = 85\mu\text{m}$, $\phi_{\text{bulk}} = 0.4$).
- ▶ Channel thickness $2b = 2\text{mm}$.
- ▶ Square wave in the flow rate. Period $T = 8\text{s}$.
Displacement amplitude $A = 4.5\text{ mm}$.



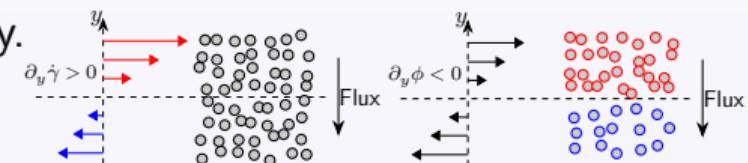
A typical experiment in images



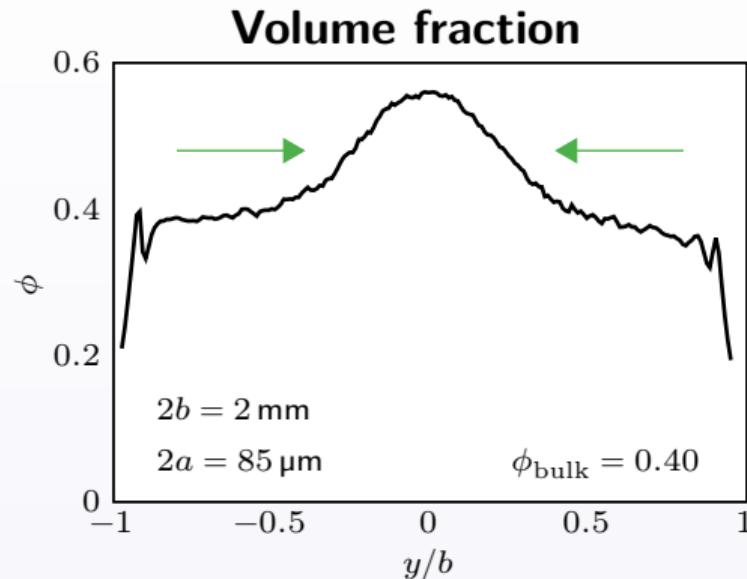
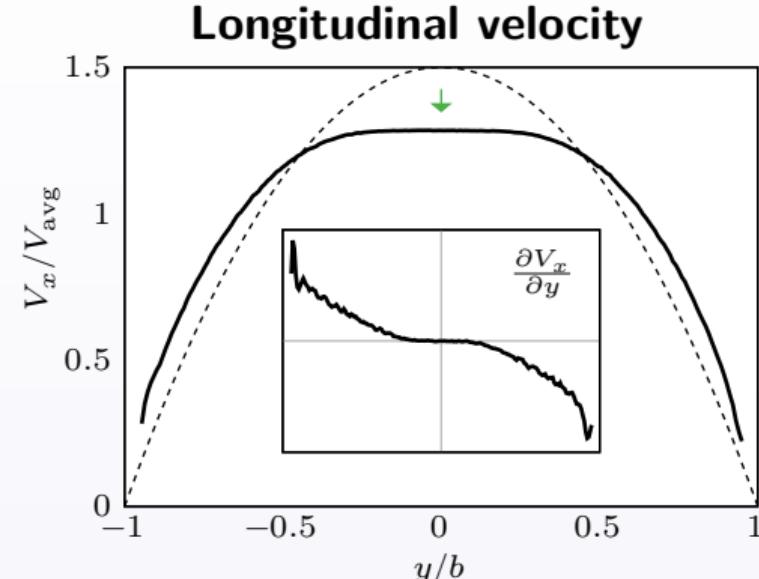
Profiles after migration and before the instability



- ▶ Particles **migrate** from the walls ($y = \pm b$) toward the center ($y = 0$).
- ▶ In the center: more particles = larger viscosity.
- ▶ Flattened velocity profile.

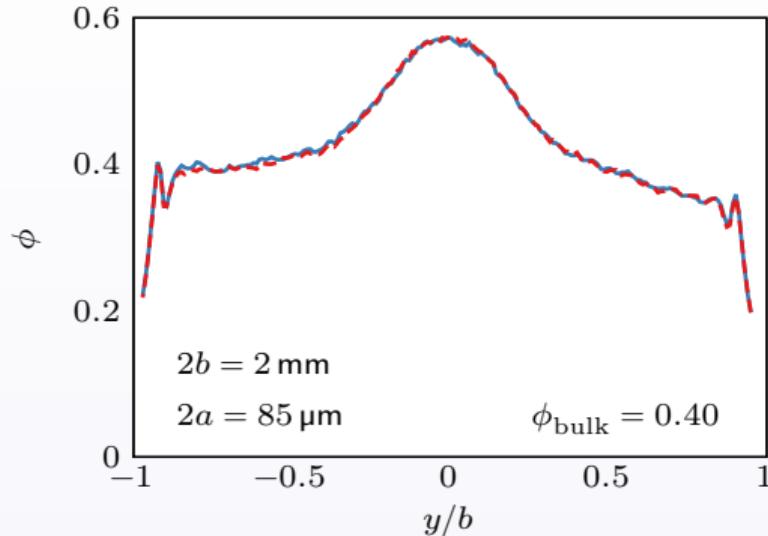
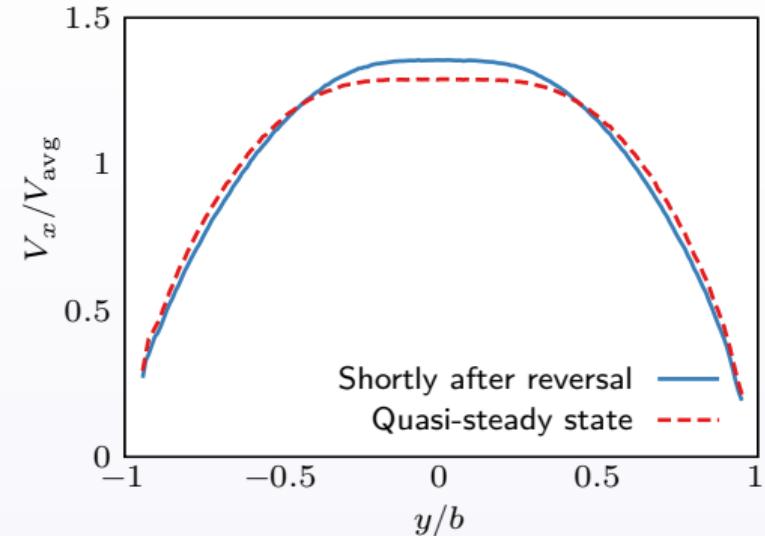


Profiles after migration and before the instability

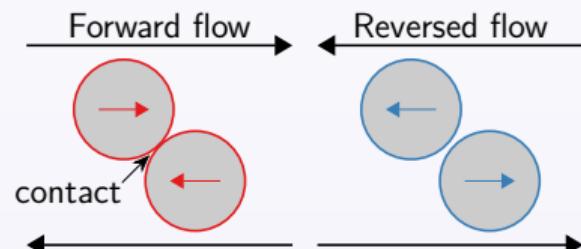


- ▶ Shear rate $\dot{\gamma} = \left| \frac{\partial V_x}{\partial y} \right|$ maximum near the walls. Nearly zero in the center.
- ▶ $1/\dot{\gamma}$ can be used as a local time scale.

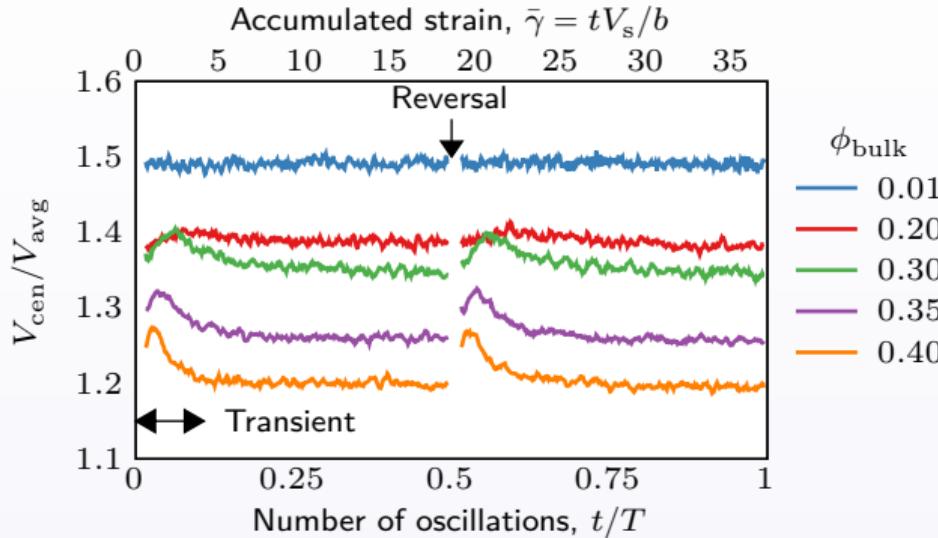
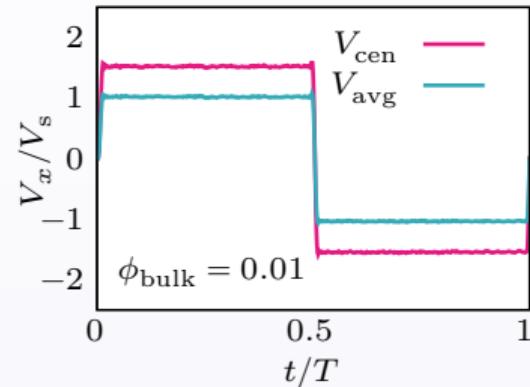
Transient effects of the flow reversals



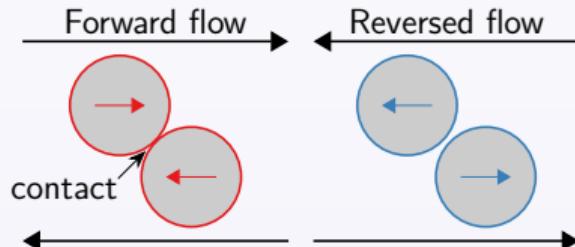
- ▶ After a flow reversal, the particles **lose contacts**.
- ▶ Non-uniform **viscosity drop**.
- ▶ Transient variation of the velocity profile $V_x(y)$.
- ▶ No variation of the volume fraction profile $\phi(y)$.



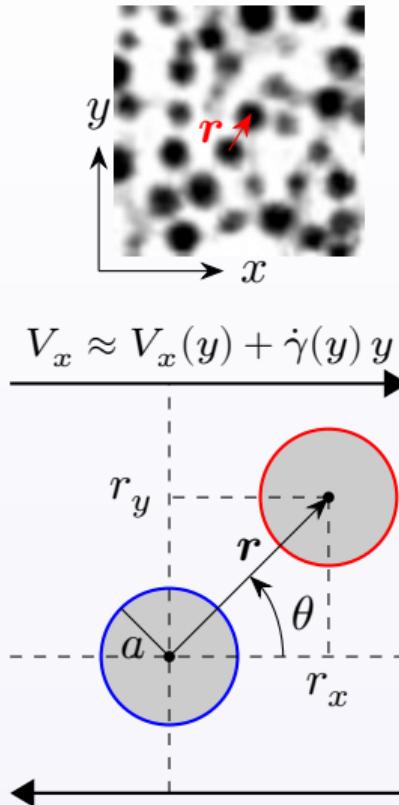
Transient effects of the flow reversals



- ▶ Transient effects become more marked with increasing ϕ_{bulk} .
- ▶ tV_s = average accumulated travelled distance.
 $V_s \approx V_{\text{avg}}$.

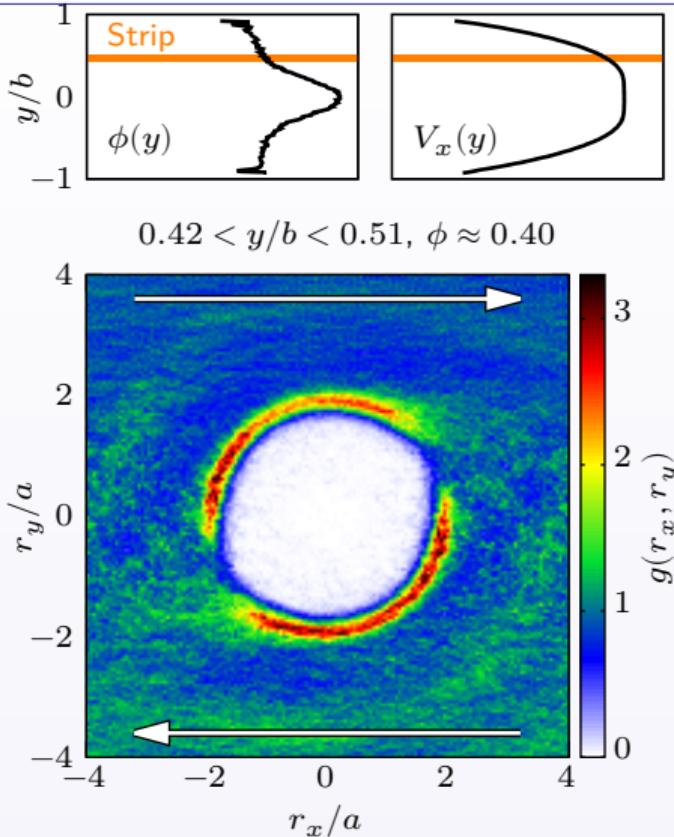


Microstructure and pair distribution function



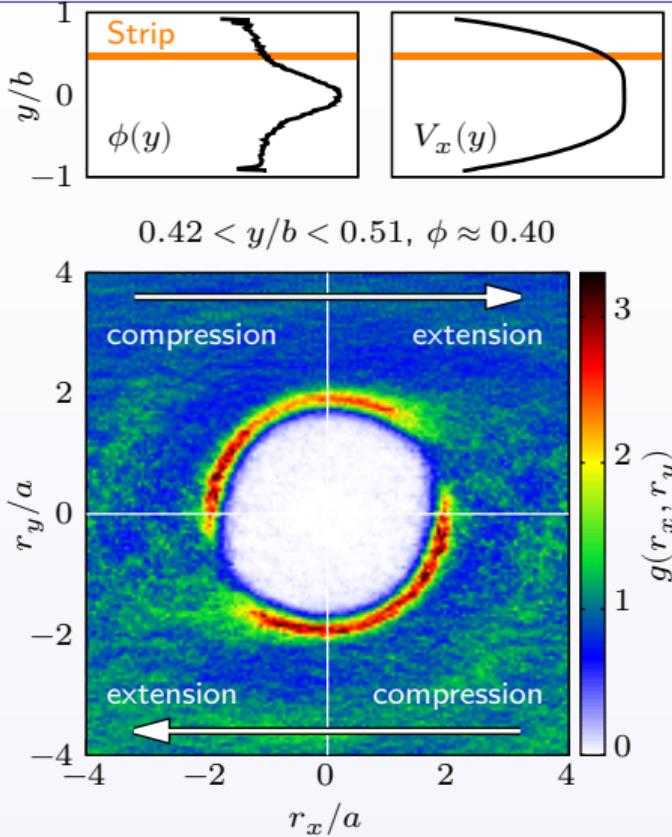
- ▶ We accumulate statistics of the **relative positions \mathbf{r}** of particle pairs to obtain...
- ▶ $P(\mathbf{x} + \mathbf{r}|\mathbf{x}) =$ probability of finding a particle at $\mathbf{x} + \mathbf{r}$ given another one at \mathbf{x} .
- ▶ Pair distribution function $g(\mathbf{r}) = P(\mathbf{x} + \mathbf{r}|\mathbf{x})/n$.
Particle number density $n \propto \phi$.
- ▶ g gives information about the particle **microstructure** separately of ϕ .
- ▶ $\phi, \dot{\gamma}, g$ vary across the thickness (y coordinate).

PDF far from the walls and the center

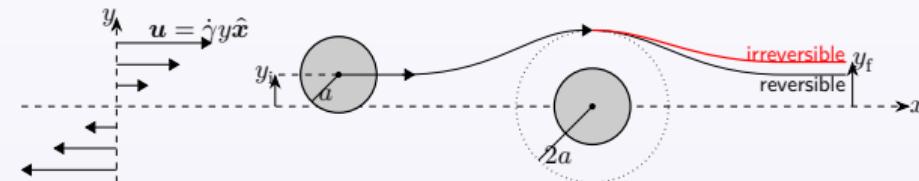


- ▶ In a narrow strip with ϕ and $\dot{\gamma} \approx$ uniform.
- ▶ 2D: all considered particles have their centers in the same xy plane.
- ▶ Quasi-steady state (long enough after reversal).
- ▶ White disk: nil probability of pairs with $r \lesssim 2a$ (no interpenetration).
- ▶ Maximum probability for $r \approx 2a$ (red ring).

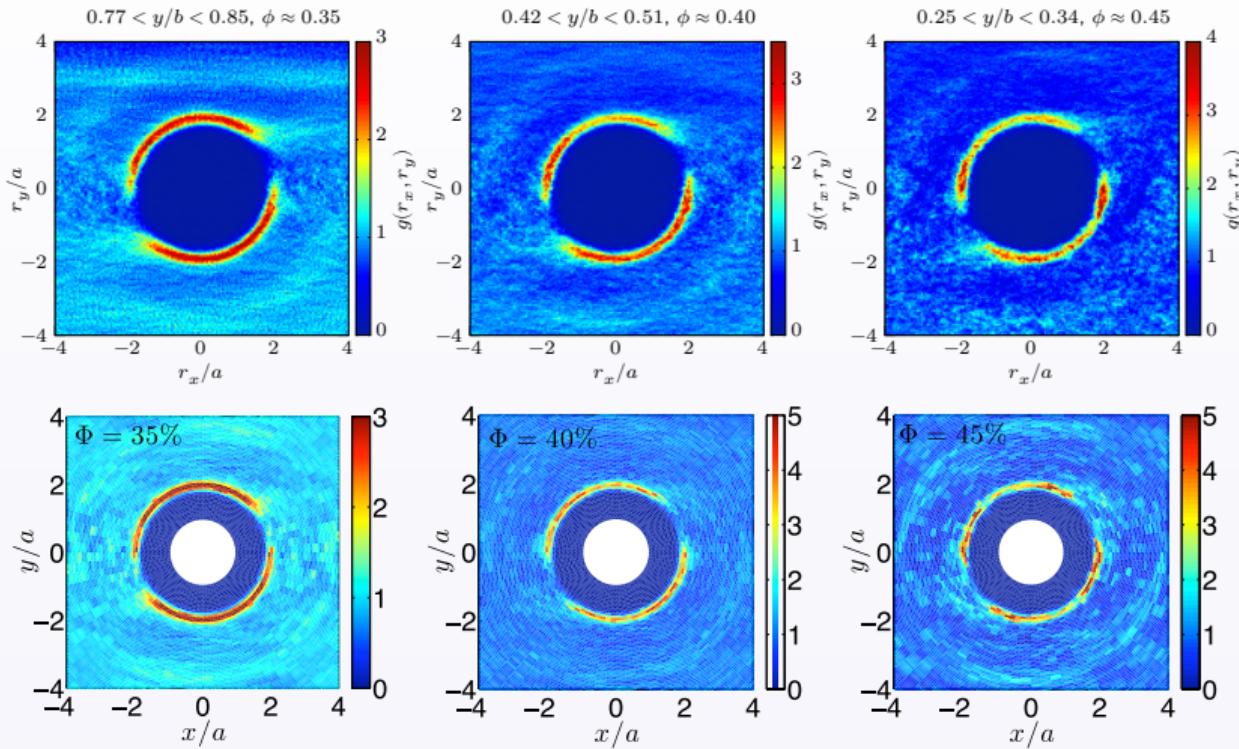
PDF far from the walls and the center



- ▶ Most particle pairs are nearly in contact ($r \approx 2a$).
- ▶ Most of them are in compression ($r_x r_y < 0$).
- ▶ Depletion of pairs in the extensional quadrant ($r_x r_y > 0$).
- ▶ **Fore-aft asymmetric** PDF due to irreversible interactions (contacts).



Agreement with experiments using uniform shear flows

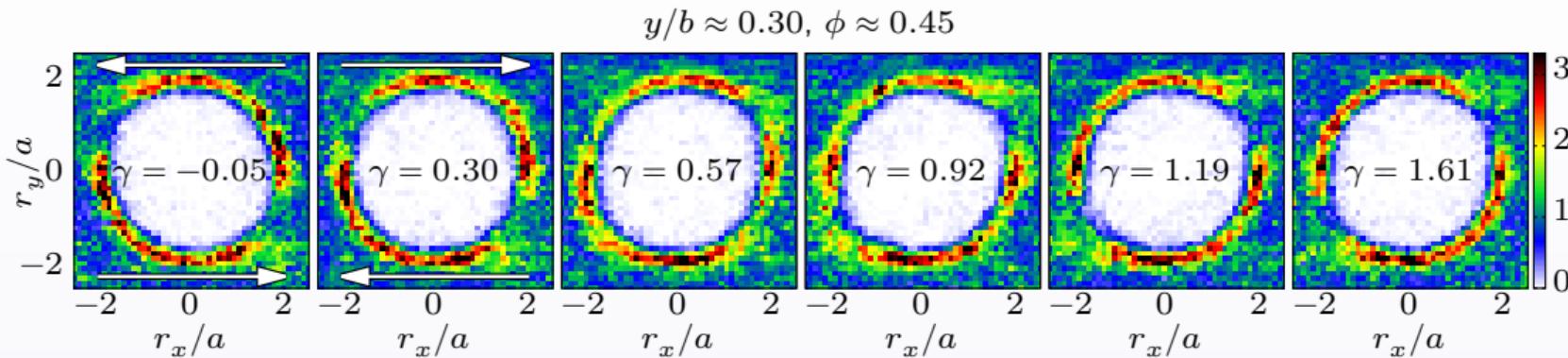


Same experiment,
different positions y .

Different experiments
with uniform ϕ and $\dot{\gamma}$.
Blanc et al. (2013 J.Rheol.)

► The steady microstructure
depends mostly on the local
 ϕ .

Reorganization after a flow reversal

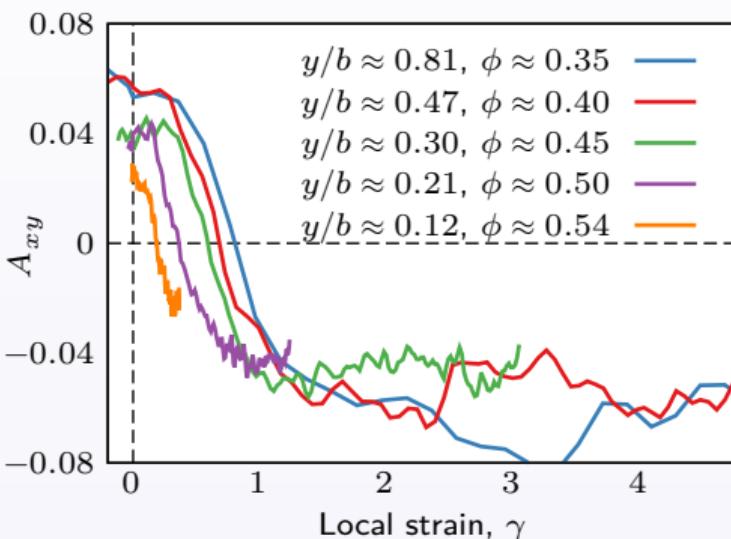
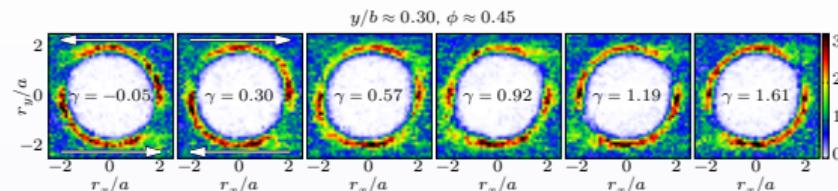


- ▶ The anisotropic microstructure depends on the shear direction.
- ▶ It must reorganize upon flow reversal.

$$\gamma(y, \Delta t) = \int_0^{\Delta t} \dot{\gamma}(y, t') dt' = \text{accumulated local deformation after each reversal}$$

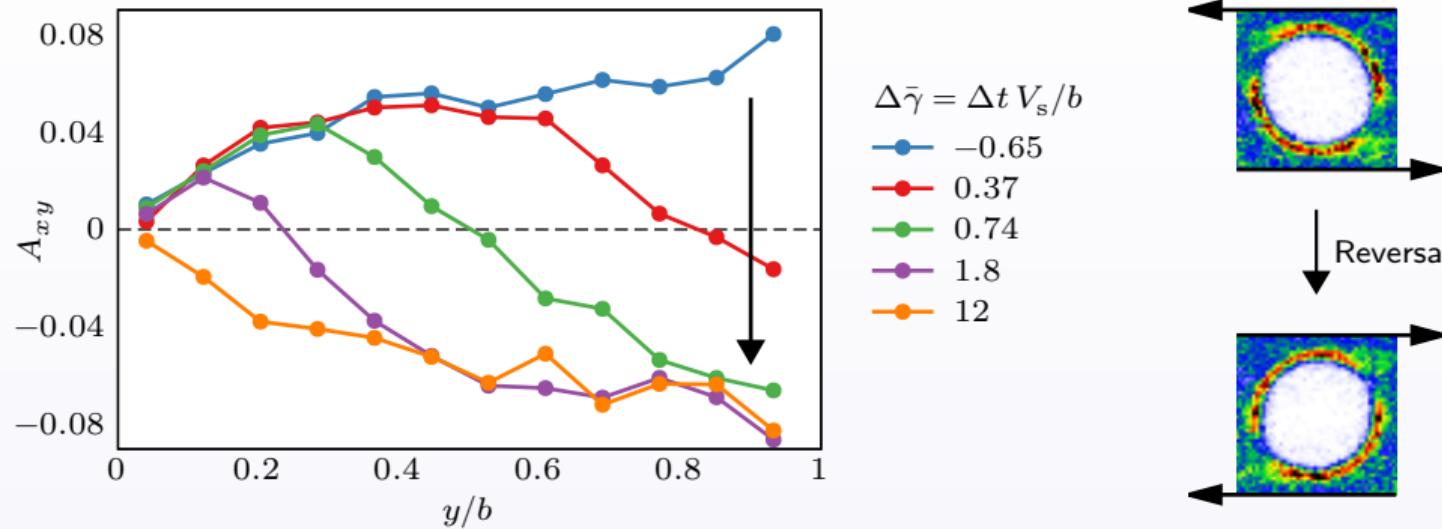
Microstructure anisotropy parameter

$$A_{xy} = \left\langle \frac{r_x r_y}{r_x^2 + r_y^2} \right\rangle_{r \approx 2a}$$



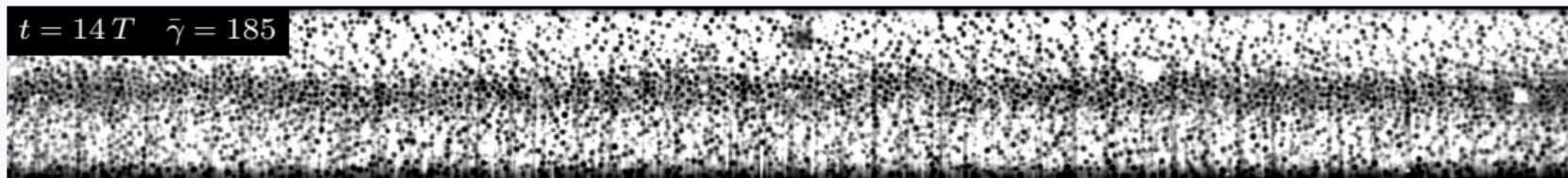
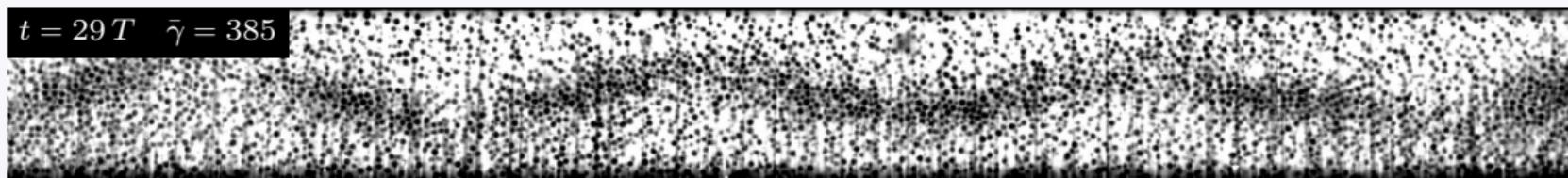
- ▶ A_{xy} is one component of a 2D fabric tensor (Gillissen and Wilson 2018).
- ▶ A_{xy} changes sign upon shear reversal.
- ▶ The characteristic strain decreases with increasing ϕ .

Non-uniformity of the variations after a flow reversal

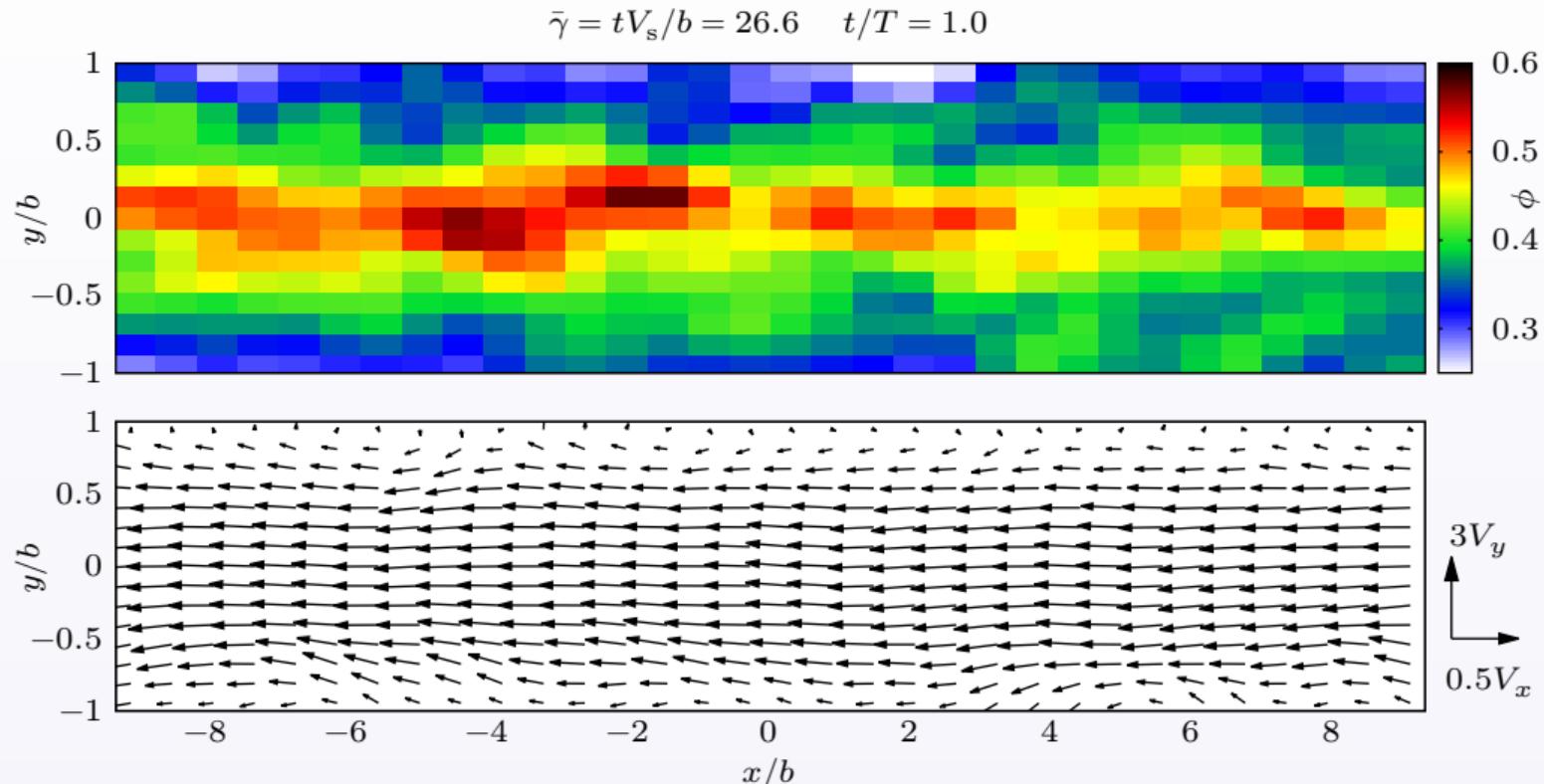


- ▶ Higher ϕ toward the center ($y = 0$) \Rightarrow Smaller characteristic strains.
- ▶ Higher $\dot{\gamma}$ toward the walls ($y = b$) \Rightarrow Faster accumulation of strain.
- ▶ Non-uniform variation of the suspension properties after each reversal.
Could it be related to the instability?

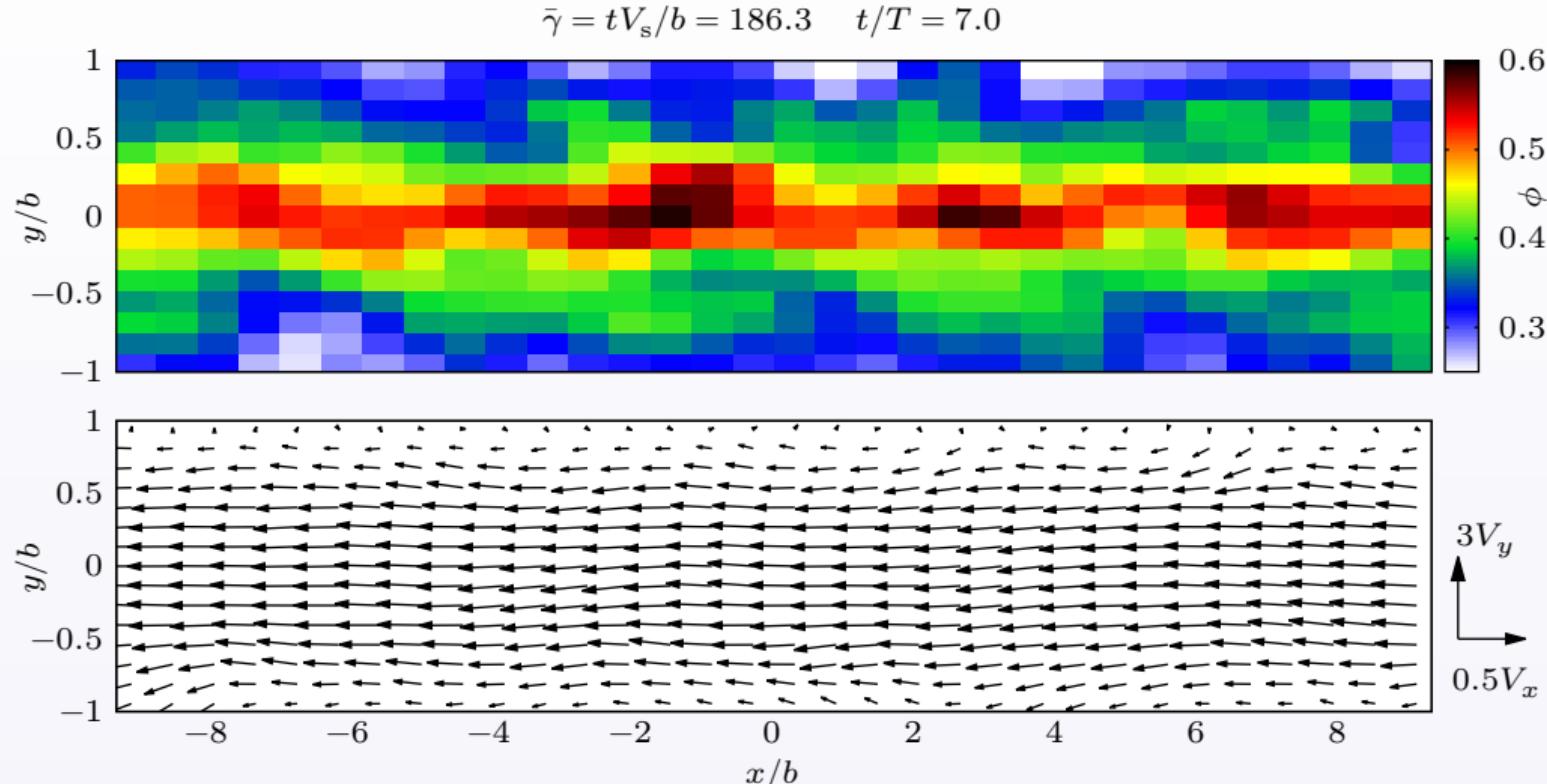
FLOW INSTABILITY INDUCED BY OSCILLATIONS



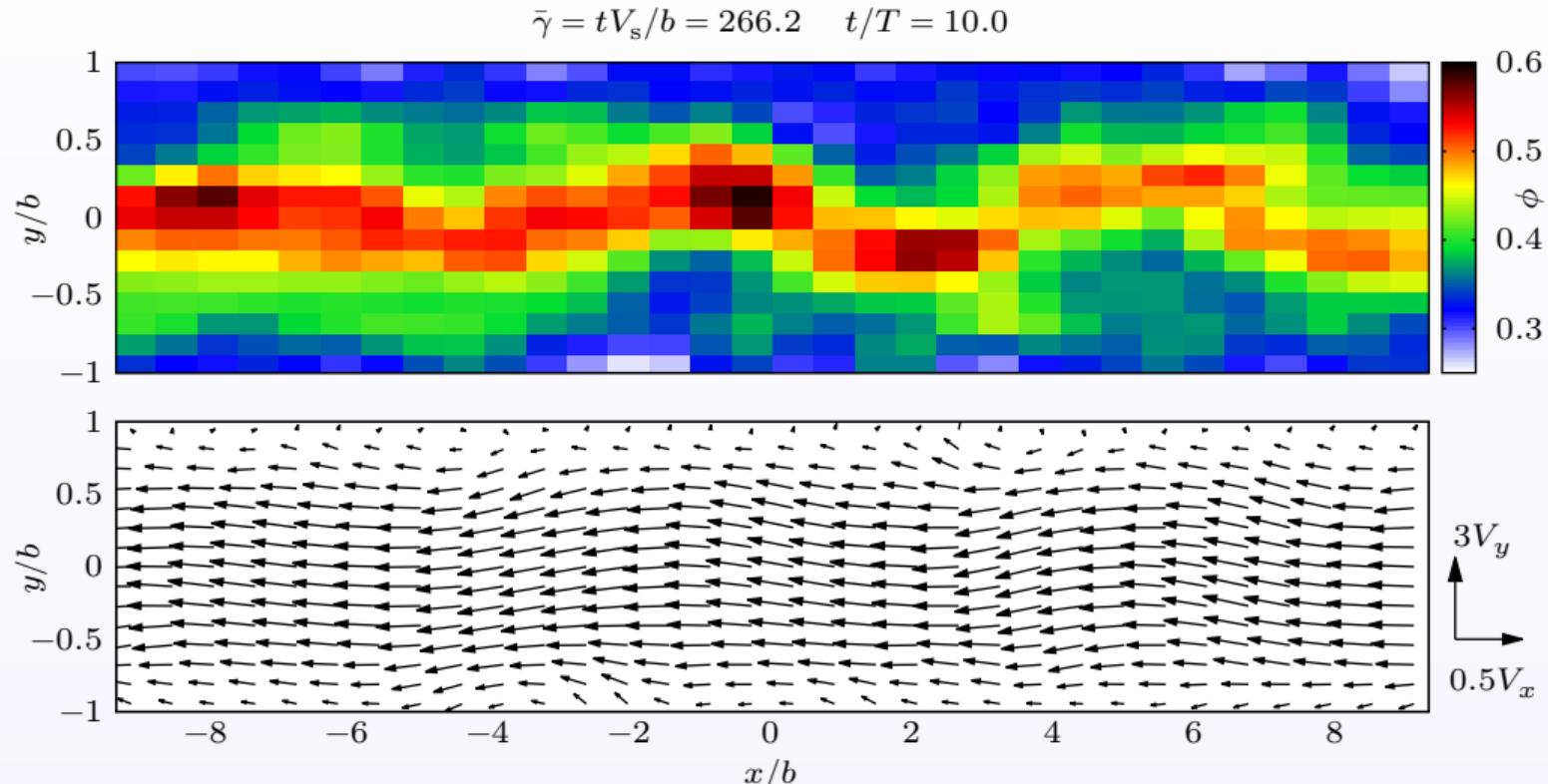
Volume fraction and velocity fields in the xy plane



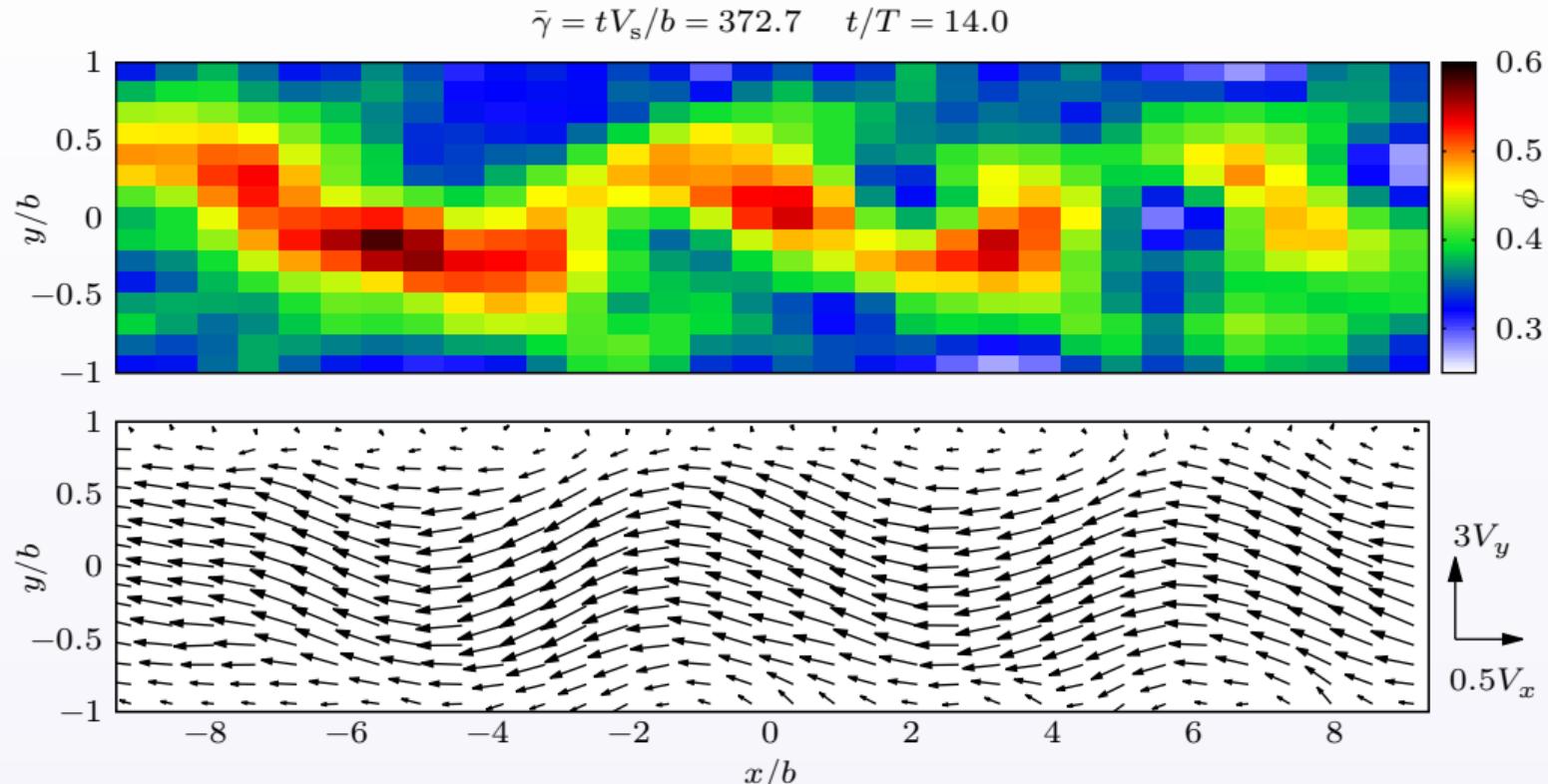
Volume fraction and velocity fields in the xy plane



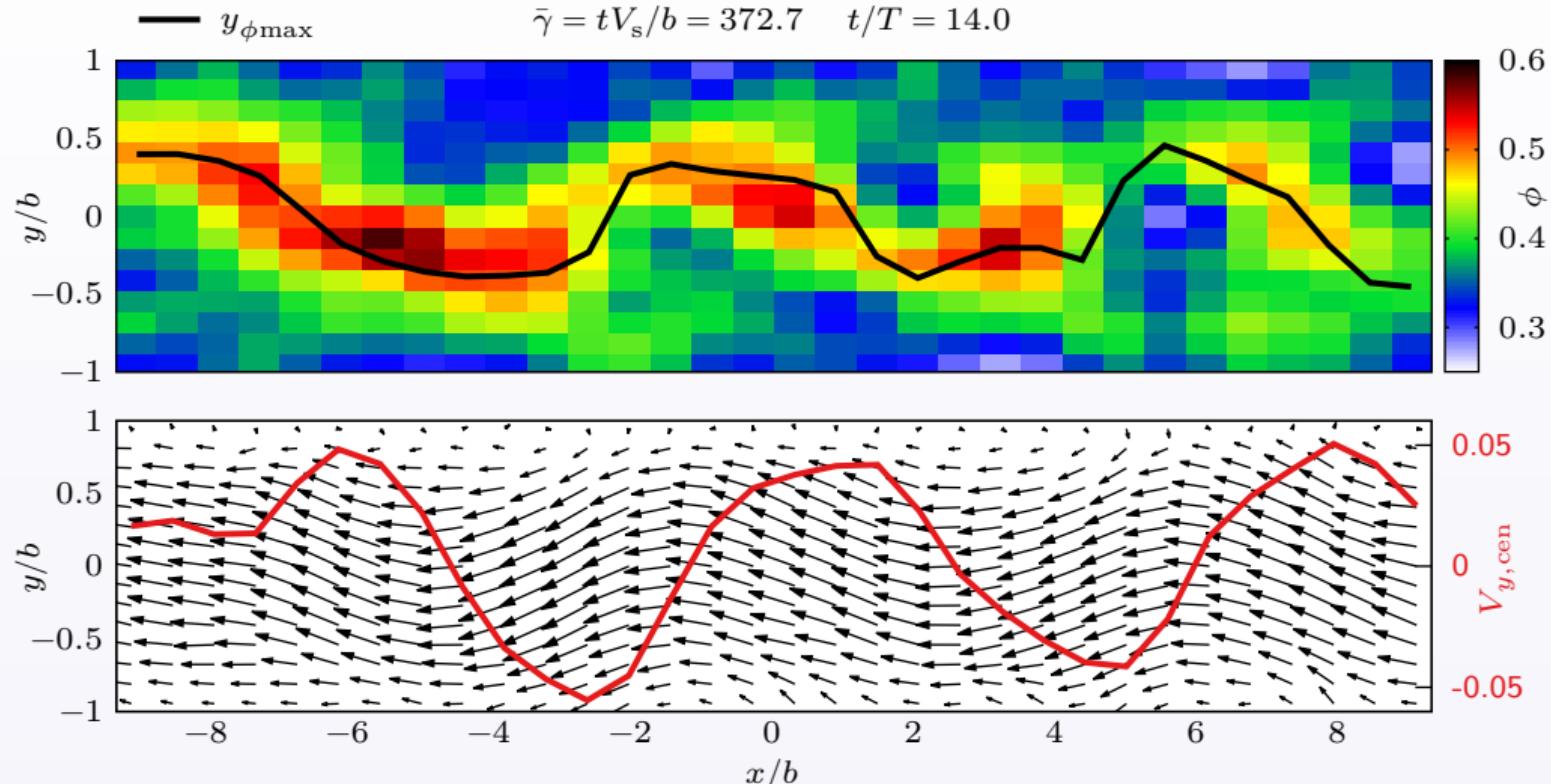
Volume fraction and velocity fields in the xy plane



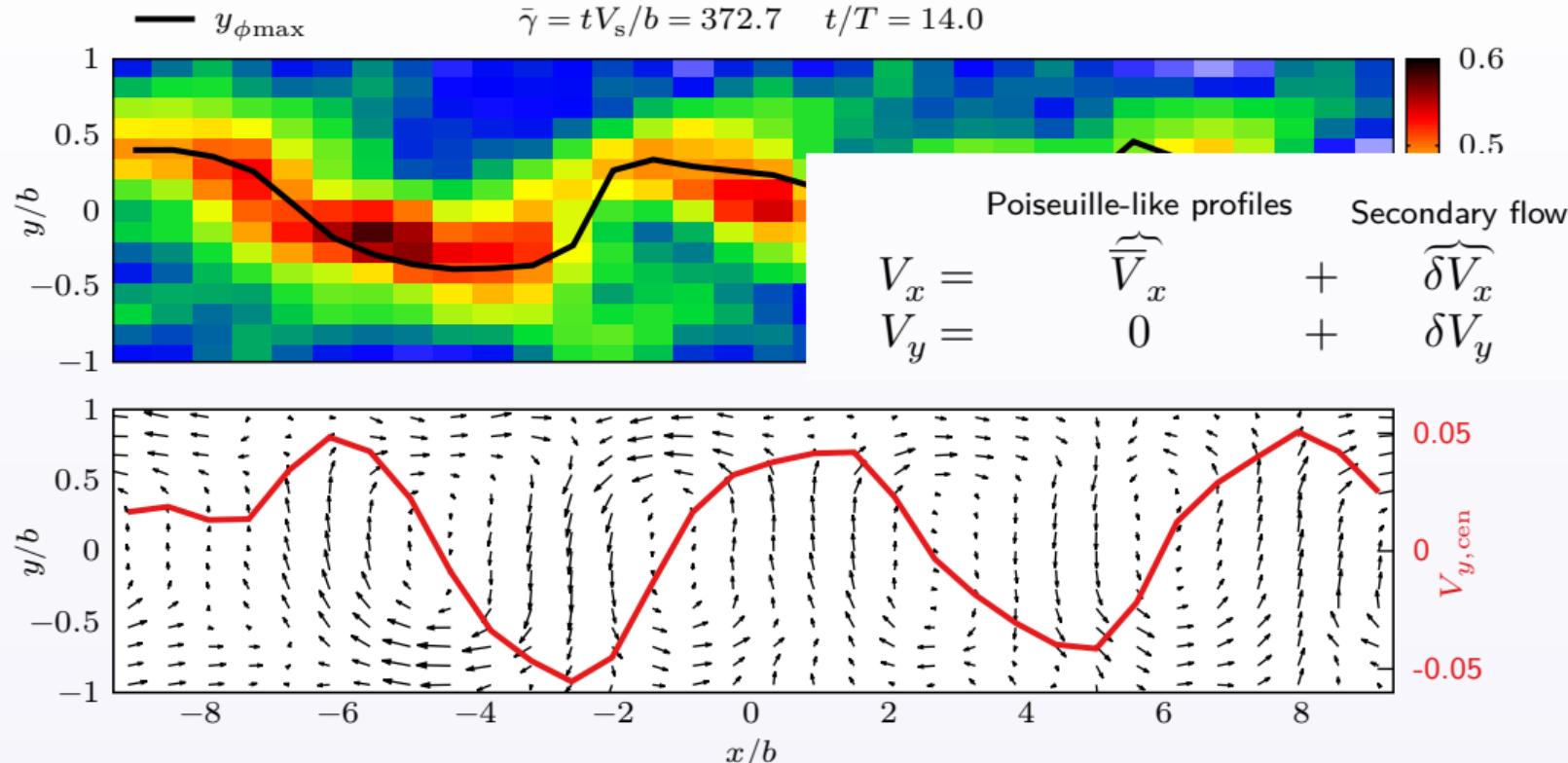
Volume fraction and velocity fields in the xy plane



Volume fraction and velocity fields in the xy plane

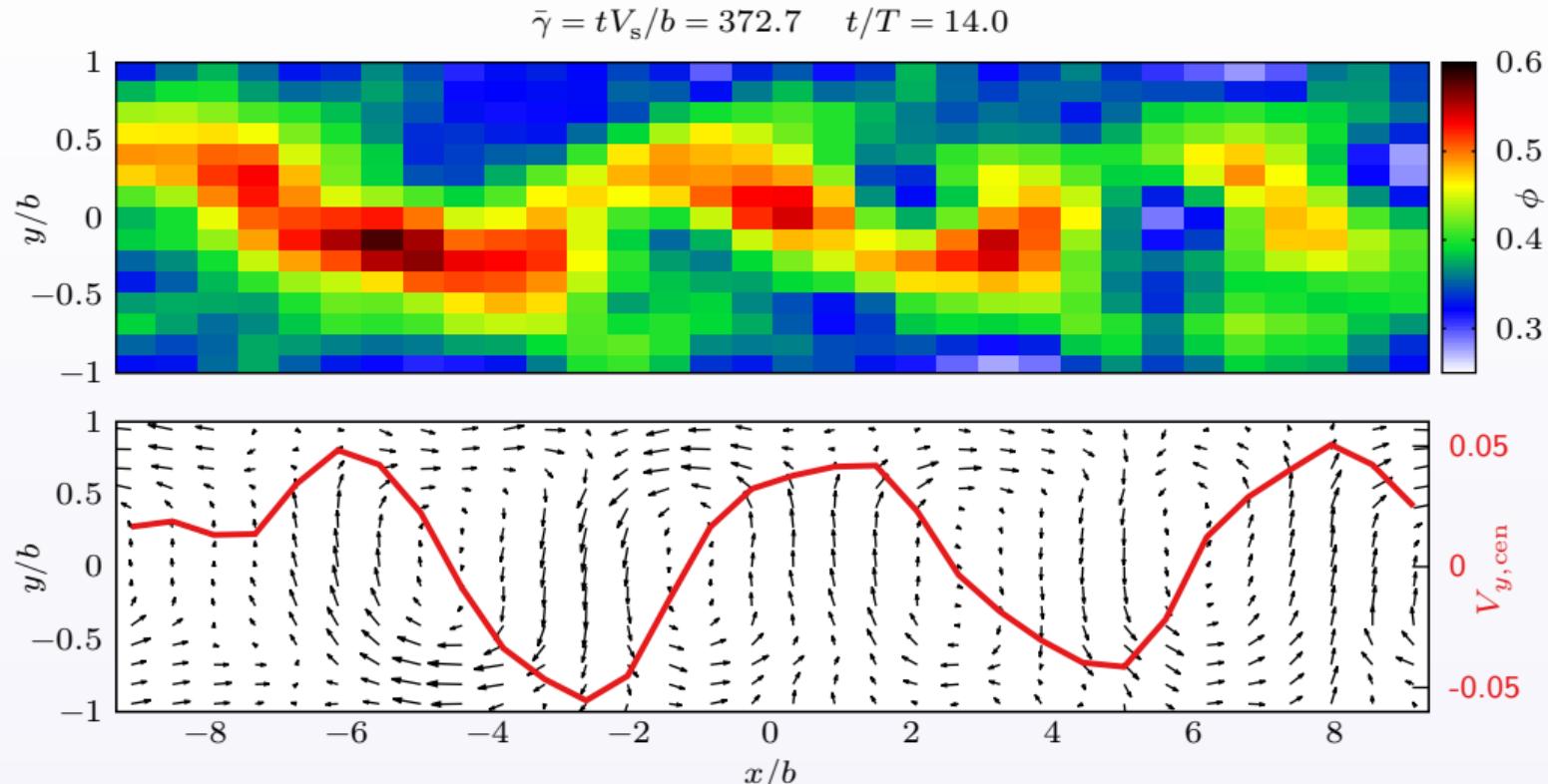


Secondary velocity field in the flow-gradient plane

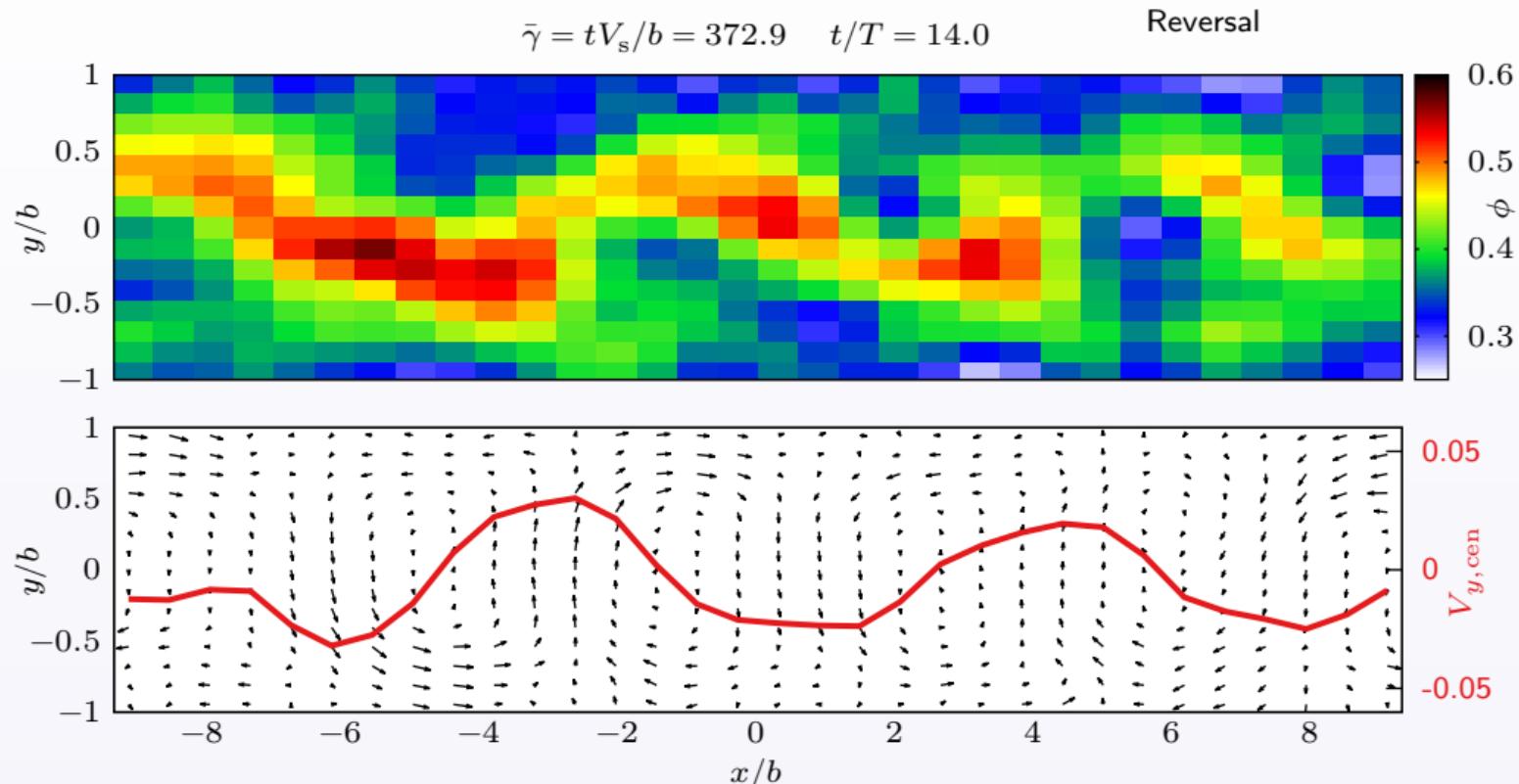


$$2a = 85 \text{ } \mu\text{m} \quad 2b = 2 \text{ } \text{mm} \quad \phi_{\text{bulk}} = 0.4$$

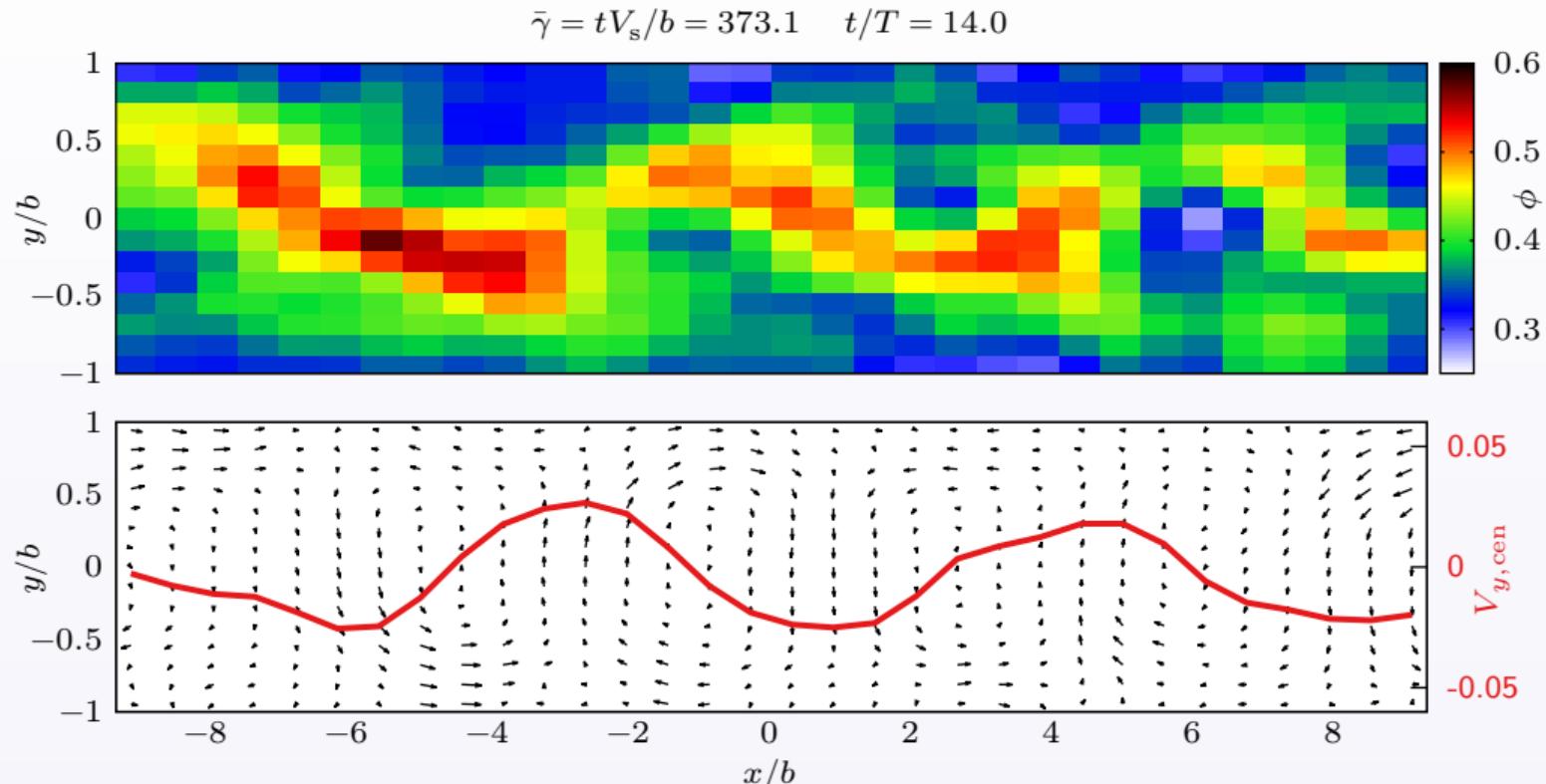
Reversal and convection of the patterns



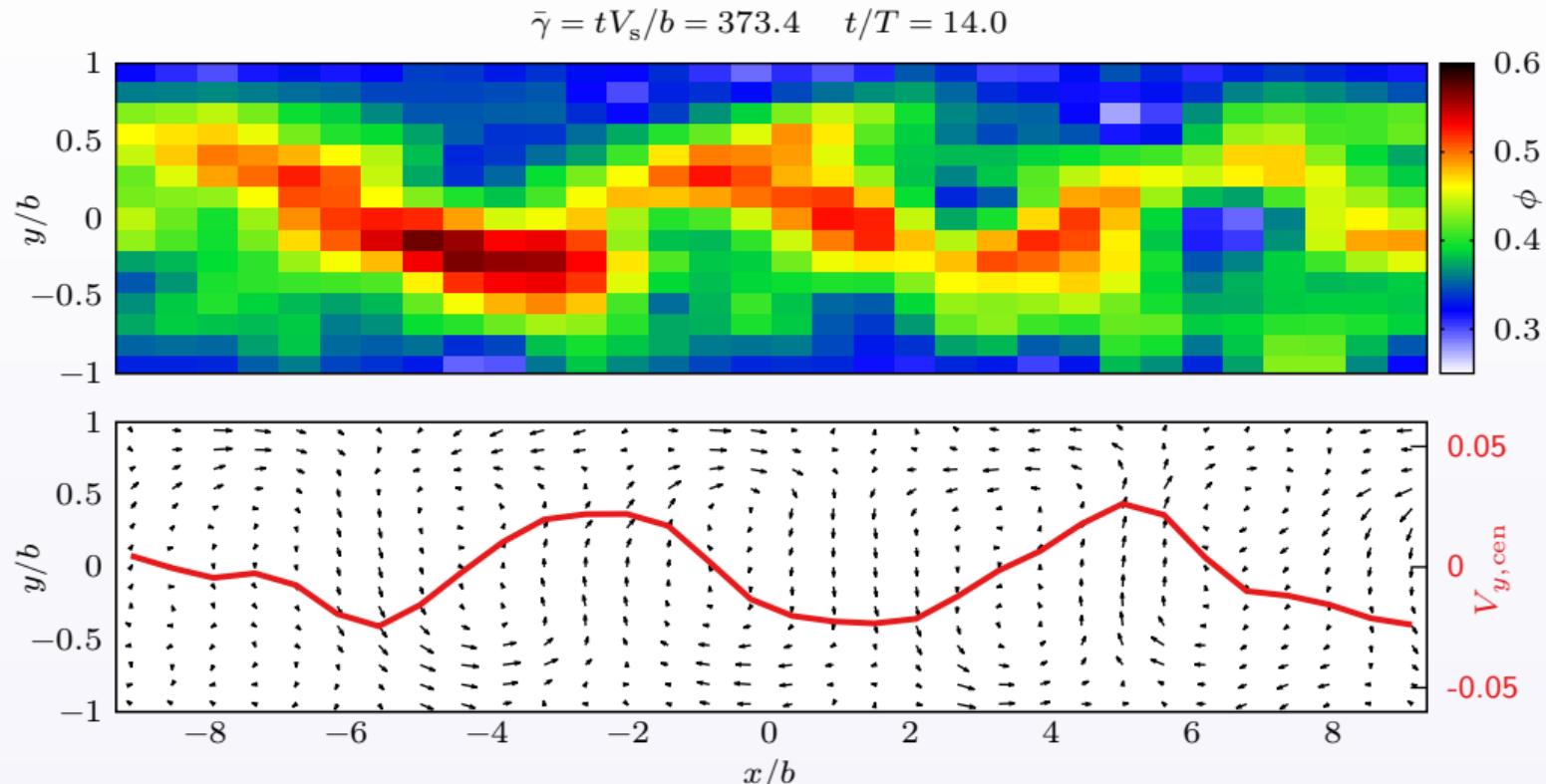
Reversal and convection of the patterns



Reversal and convection of the patterns

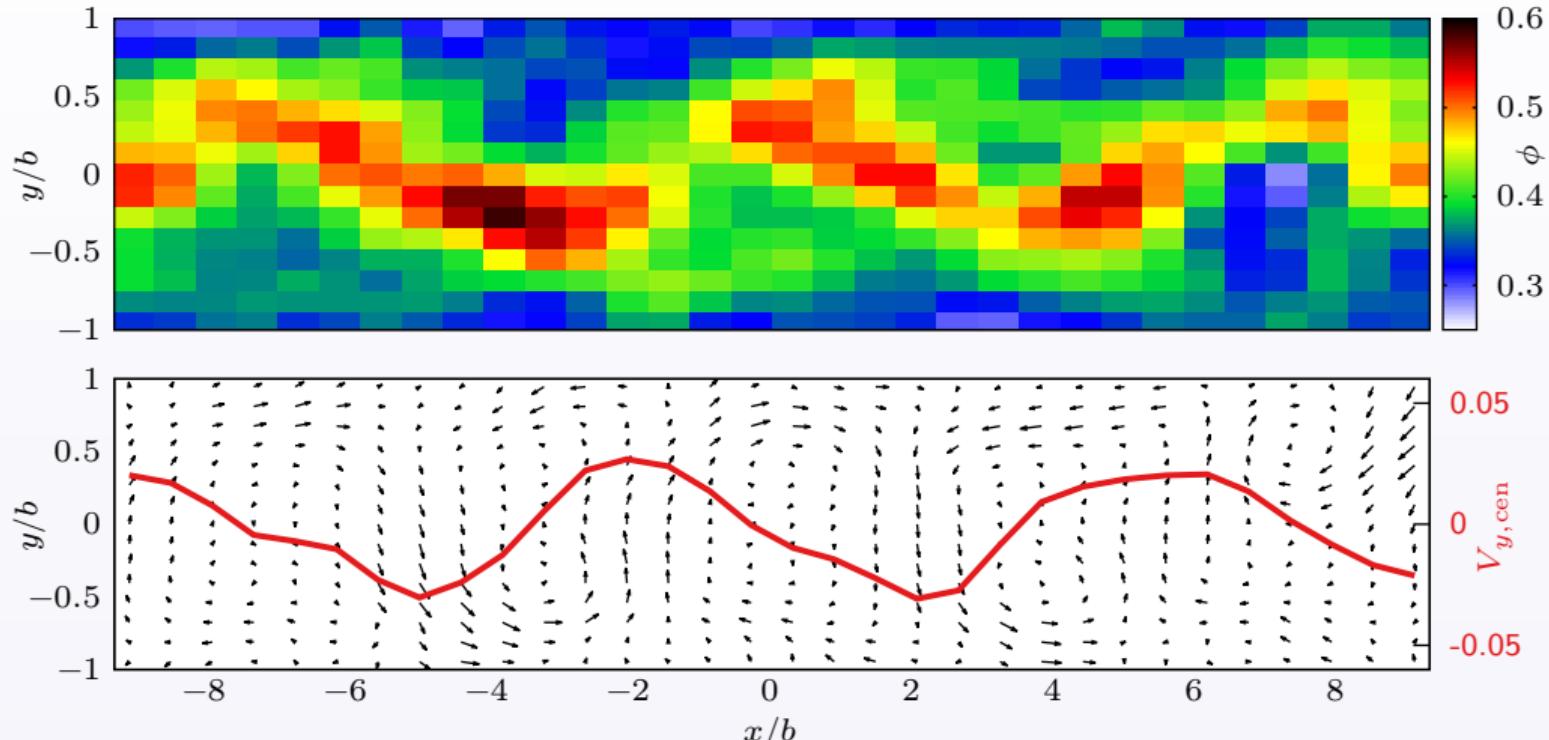


Reversal and convection of the patterns



Reversal and convection of the patterns

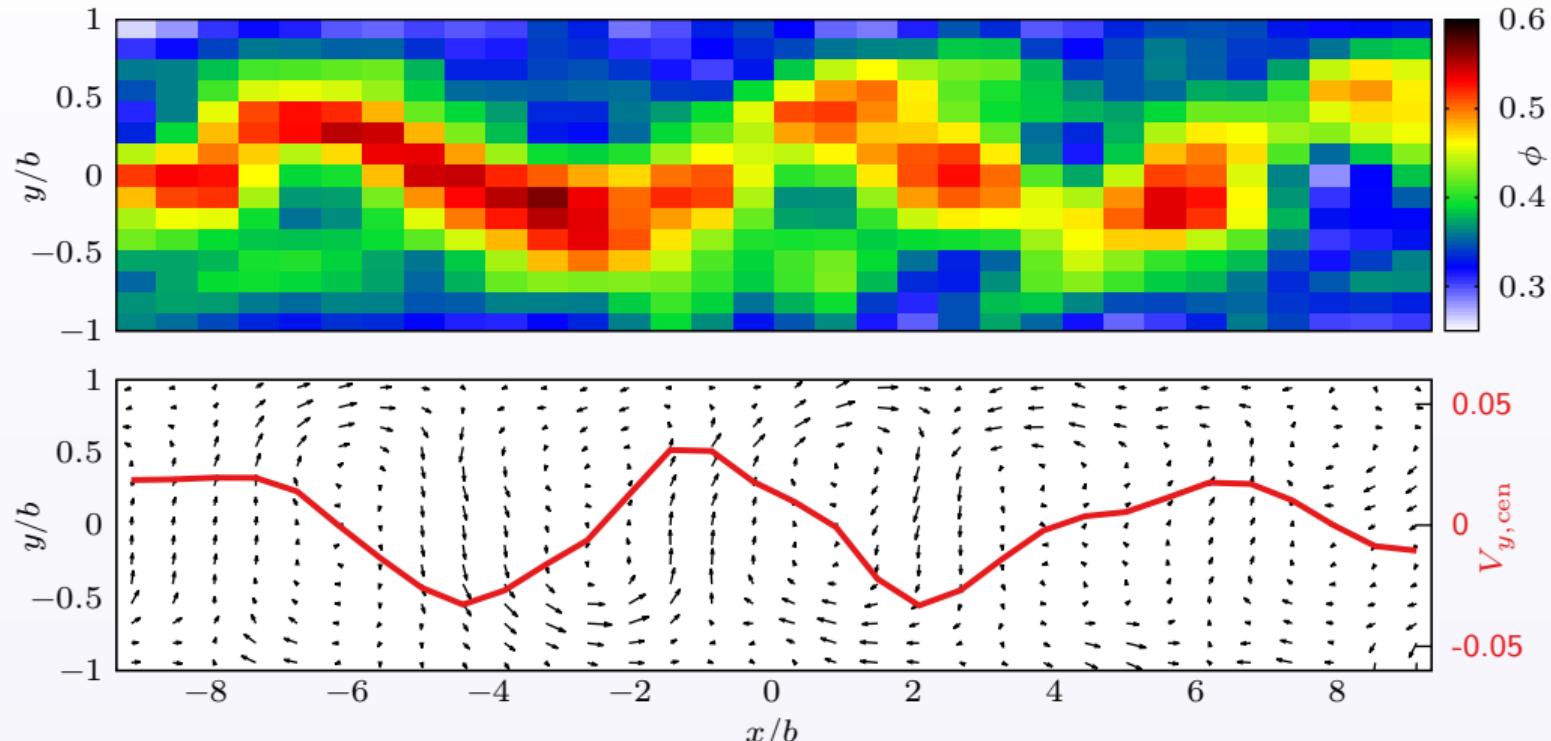
$$\bar{\gamma} = tV_s/b = 373.9 \quad t/T = 14.0$$



$$2a = 85 \mu\text{m} \quad 2b = 2 \text{ mm} \quad \phi_{\text{bulk}} = 0.4$$

Reversal and convection of the patterns

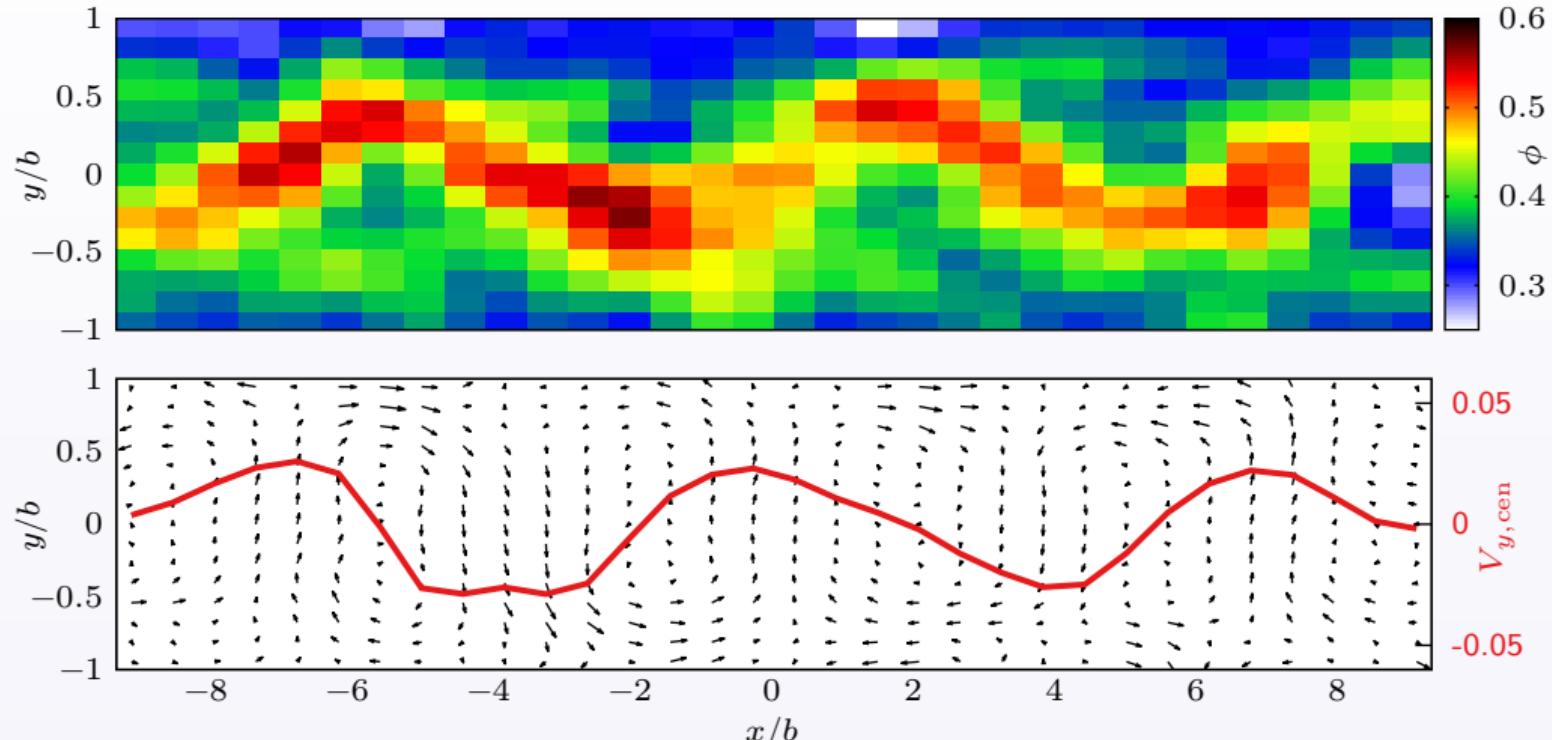
$$\bar{\gamma} = tV_s/b = 374.5 \quad t/T = 14.1$$



$$2a = 85 \mu\text{m} \quad 2b = 2 \text{ mm} \quad \phi_{\text{bulk}} = 0.4$$

Reversal and convection of the patterns

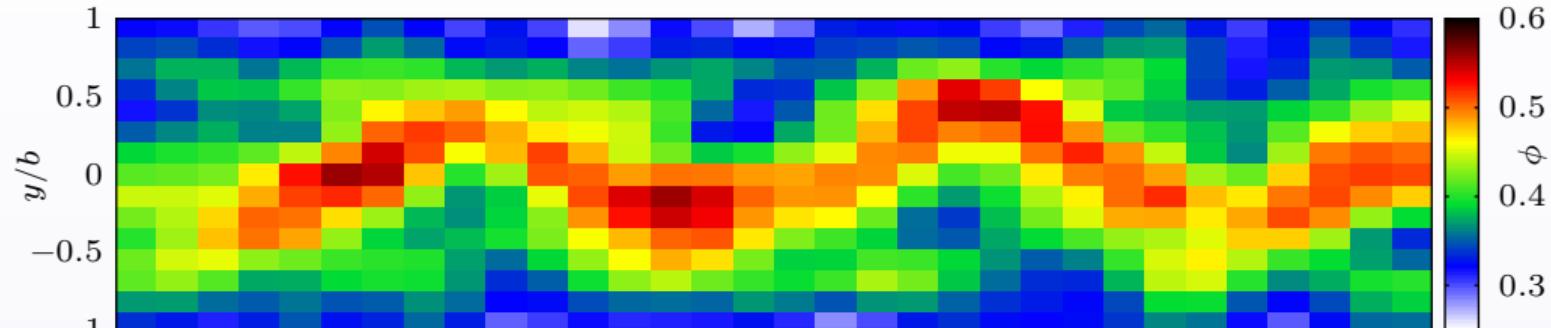
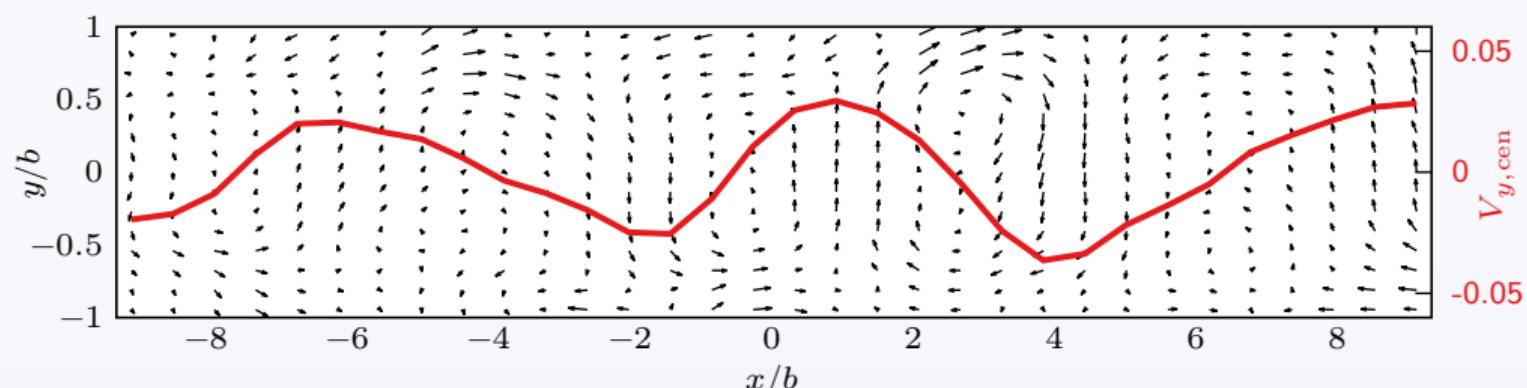
$$\bar{\gamma} = tV_s/b = 375.2 \quad t/T = 14.1$$



$$2a = 85 \mu\text{m} \quad 2b = 2 \text{ mm} \quad \phi_{\text{bulk}} = 0.4$$

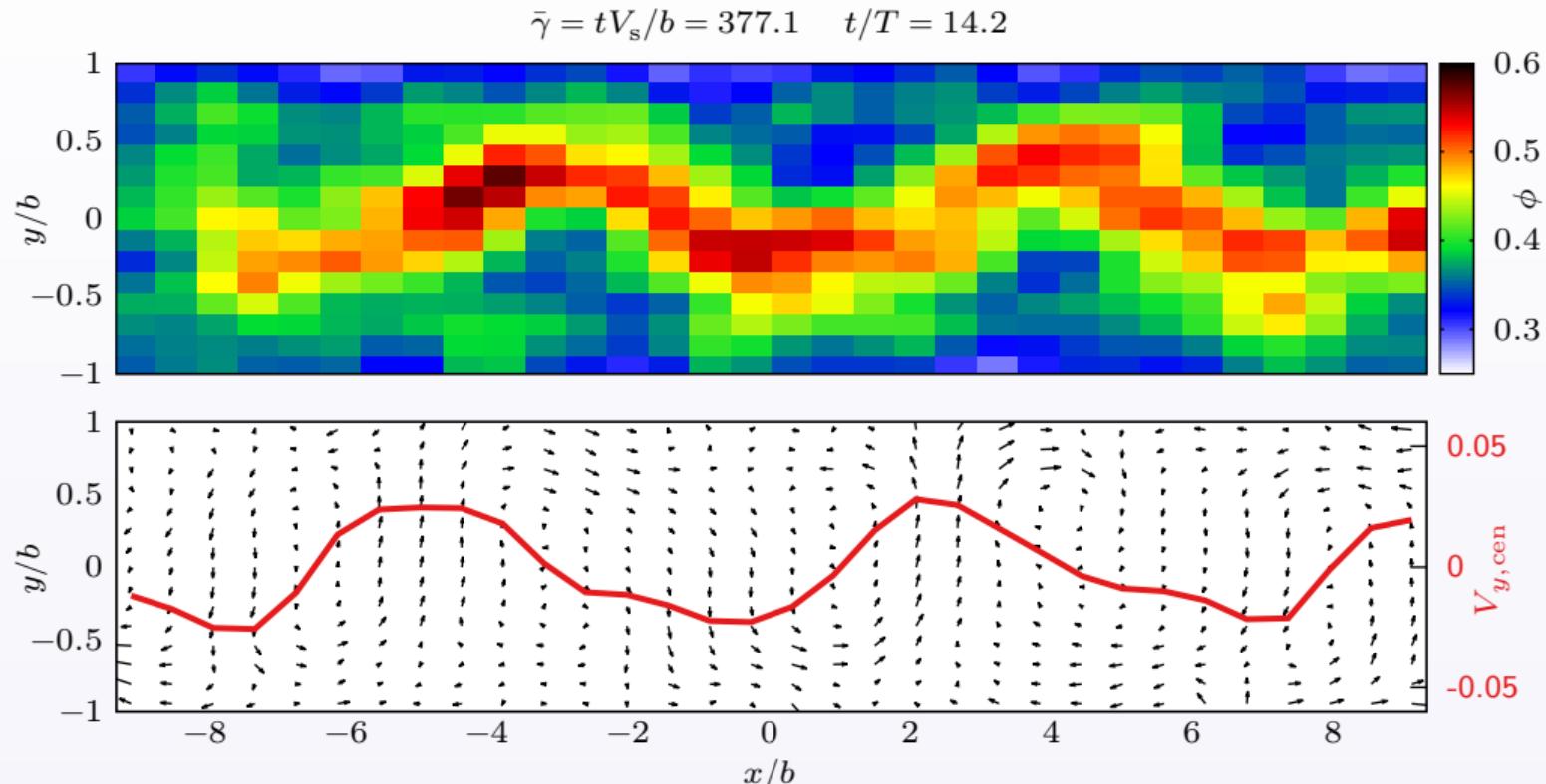
Reversal and convection of the patterns

$$\bar{\gamma} = tV_s/b = 376.1 \quad t/T = 14.1$$

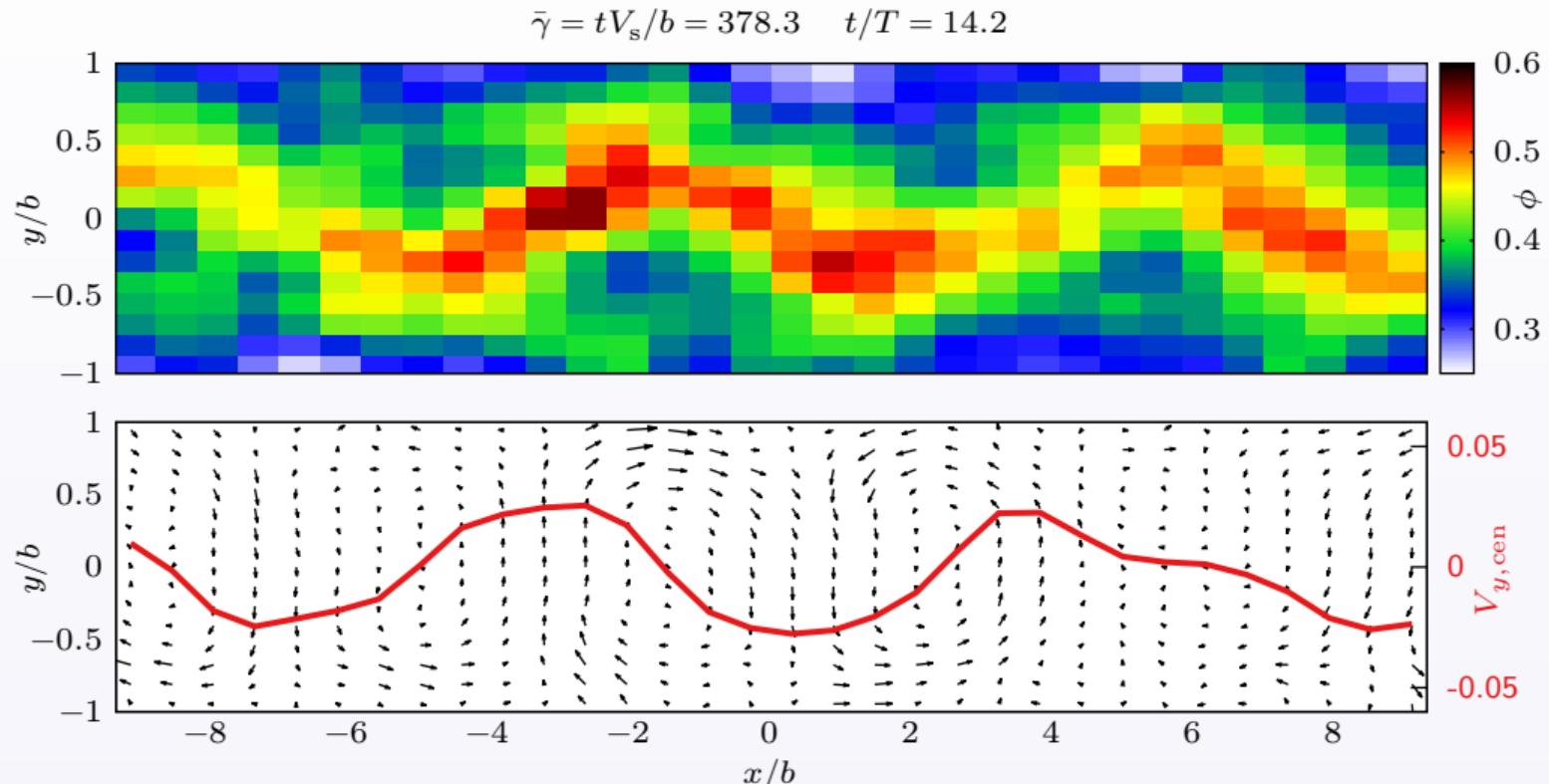


$$2a = 85 \mu\text{m} \quad 2b = 2 \text{ mm} \quad \phi_{\text{bulk}} = 0.4$$

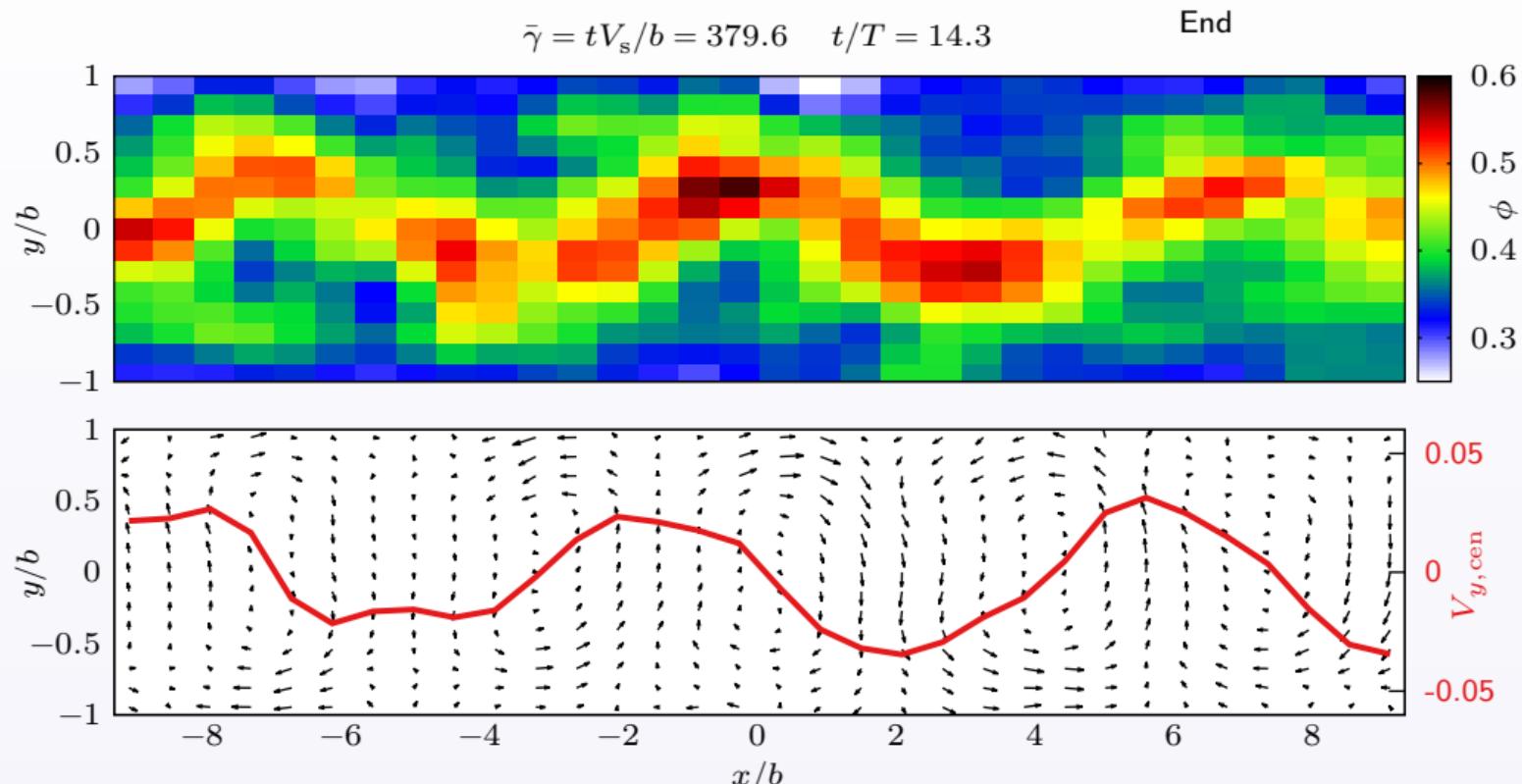
Reversal and convection of the patterns



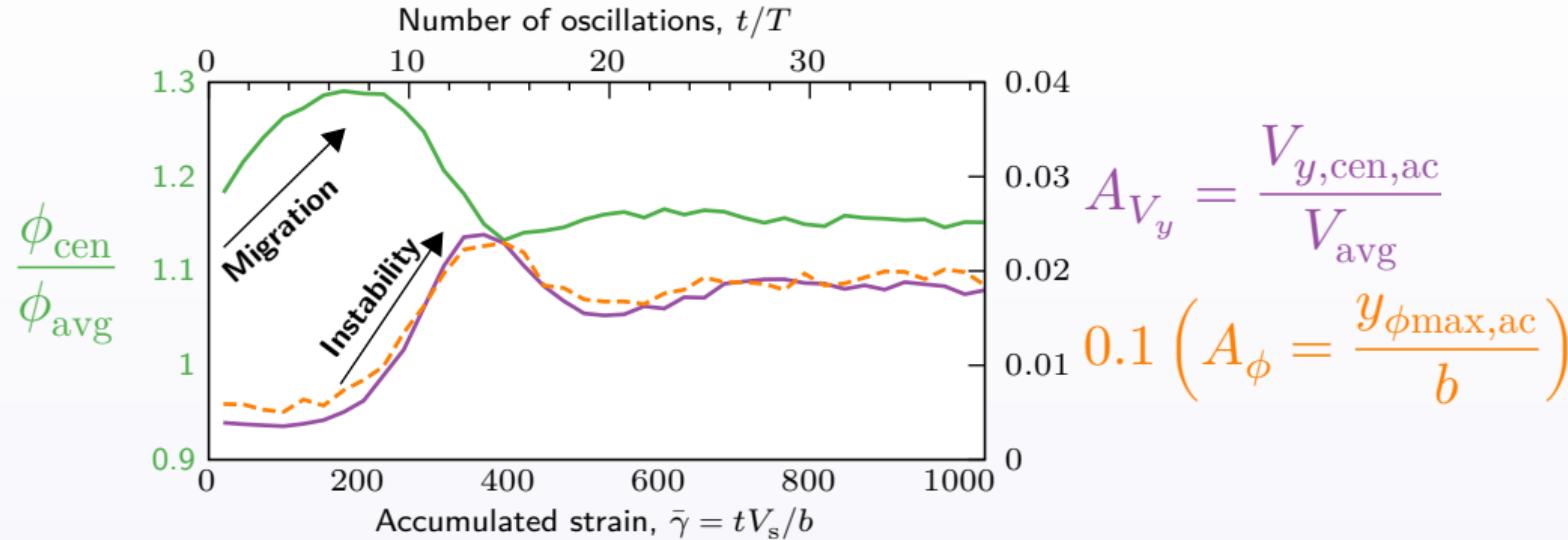
Reversal and convection of the patterns



Reversal and convection of the patterns

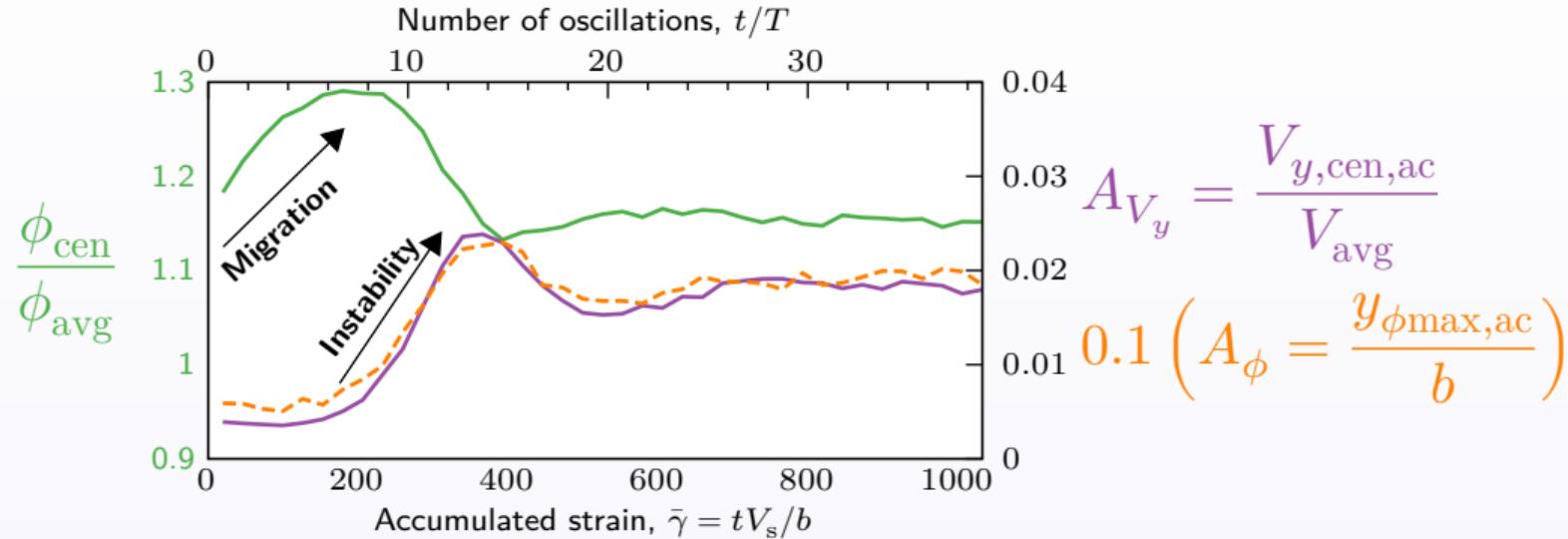


Long-term evolution of key variables



- ▶ One point per period, only quasi-steady state information.
- ▶ ϕ_{cen} : particle volume fraction near $y = 0$.
- ▶ A_{V_y} : normalized amplitude of the secondary flow.
- ▶ A_{ϕ} : normalized amplitude of the deformation of the central band.

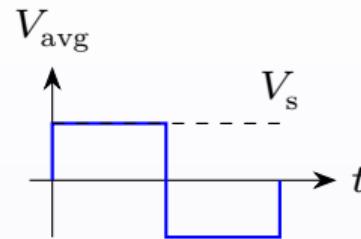
Long-term evolution of key variables



- ▶ One point per period, only quasi-steady state information.
- ▶ ϕ_{cen} : particle volume fraction near $y = 0$.
- ▶ A_{V_y} : normalized amplitude of the secondary flow.
- ▶ A_ϕ : normalized amplitude of the deformation of the central band.

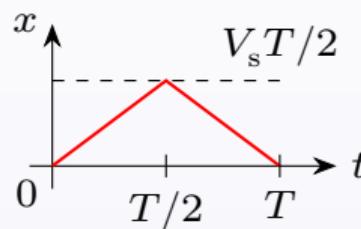
Further characterization
using $A_{V_y}(\bar{\gamma})$

Influence of the oscillation amplitude for 85 μm particles



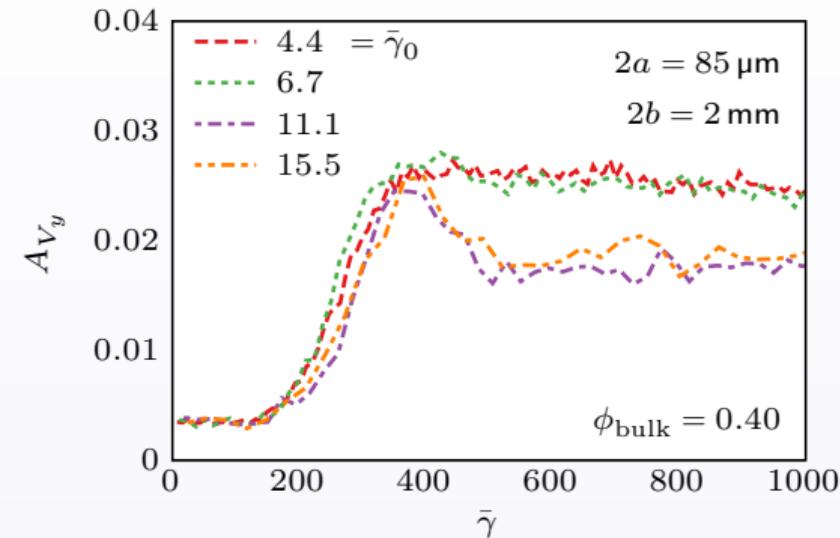
Accumulated strain:

$$\bar{\gamma} = \frac{V_s}{b} t$$



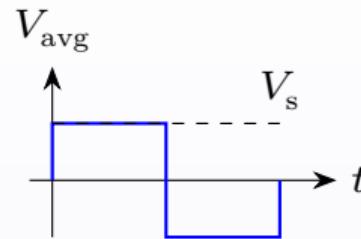
Oscillation amplitude:

$$\bar{\gamma}_0 = \frac{V_s}{b} \frac{T}{2}$$



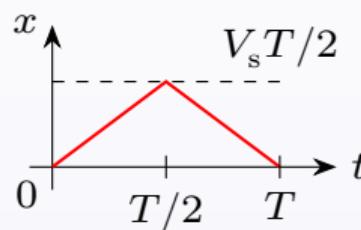
- ▶ The instability develops with similar strains $\bar{\gamma}$ in this range of $\bar{\gamma}_0$.
- ▶ Different $\bar{\gamma}_0 \Rightarrow$ different number of oscillations to reach a given $\bar{\gamma}$.

Influence of the oscillation amplitude for 40 μm particles



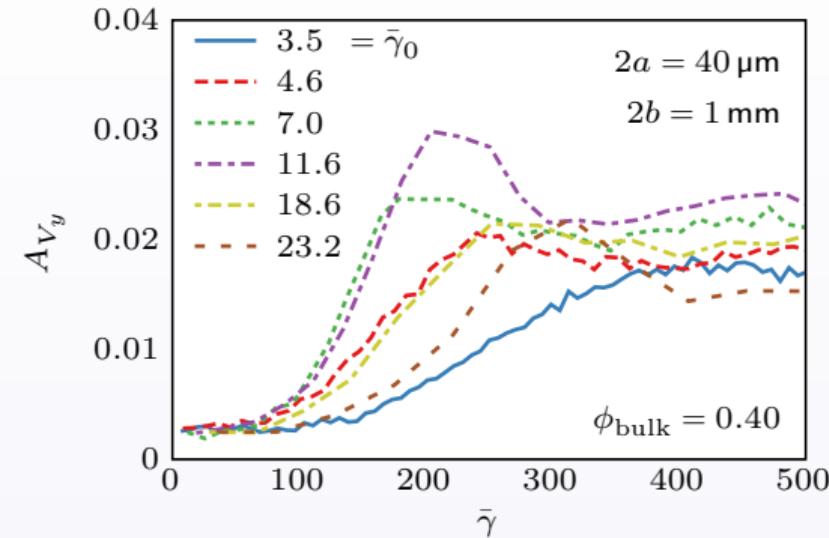
Accumulated strain:

$$\bar{\gamma} = \frac{V_s}{b} t$$



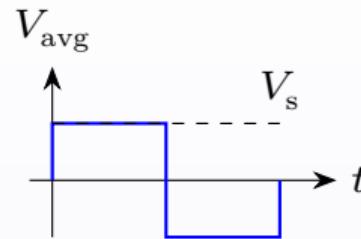
Oscillation amplitude:

$$\bar{\gamma}_0 = \frac{V_s}{b} \frac{T}{2}$$



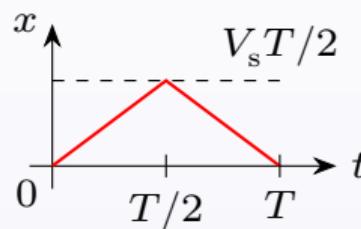
- ▶ Similar ratio $b/a \approx 25$, wider range of amplitudes $\bar{\gamma}_0$.
- ▶ Slower growth for extreme amplitudes.
- ▶ In general, faster than the 85 μm particles.

Influence of the oscillation amplitude for 40 μm particles



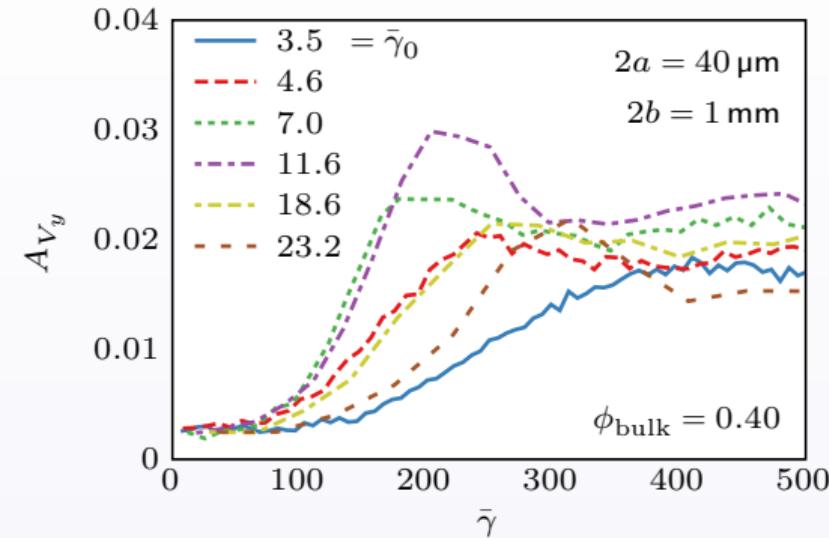
Accumulated strain:

$$\bar{\gamma} = \frac{V_s}{b} t$$



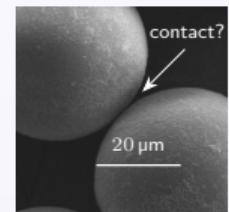
Oscillation amplitude:

$$\bar{\gamma}_0 = \frac{V_s}{b} \frac{T}{2}$$

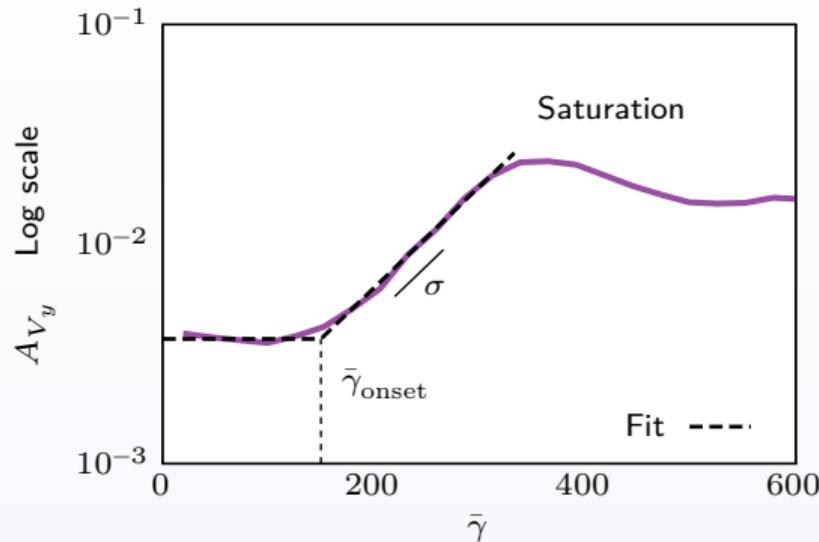


- ▶ Similar ratio $b/a \approx 25$, wider range of amplitudes $\bar{\gamma}_0$.
- ▶ Slower growth for extreme amplitudes.
- ▶ In general, faster than the 85 μm particles.

Maybe a difference
in the **asperity size**?

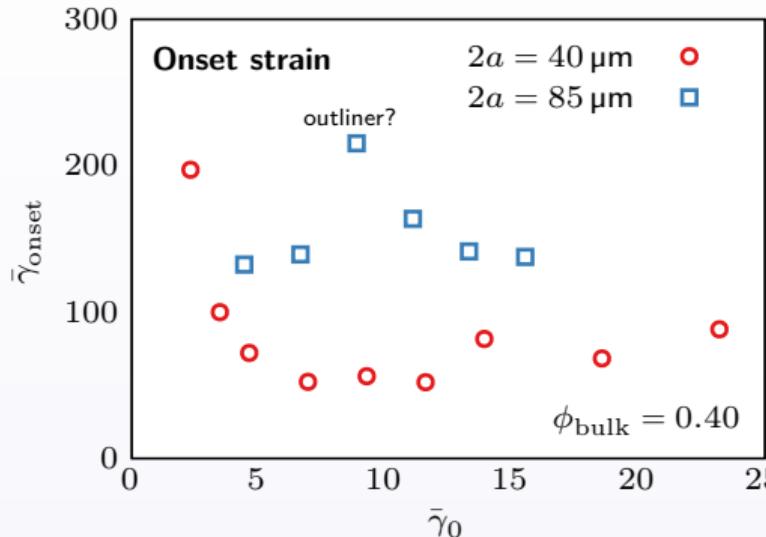
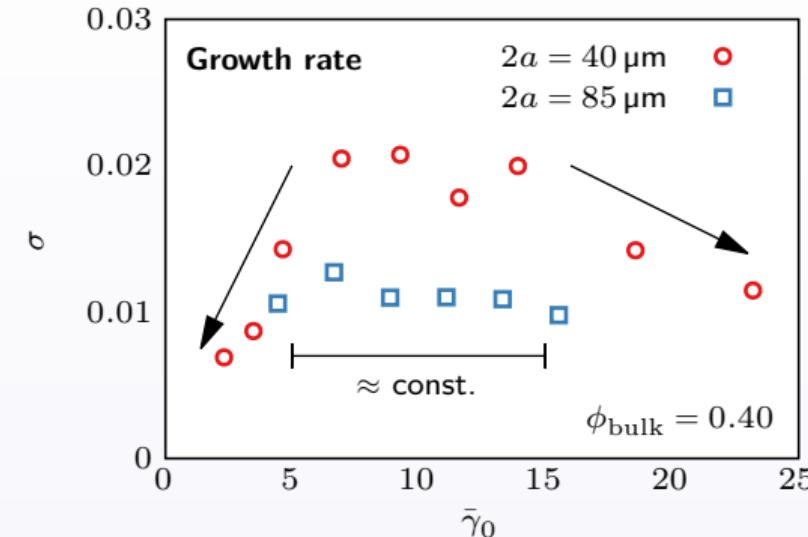


Determination of the onset strain and a growth rate



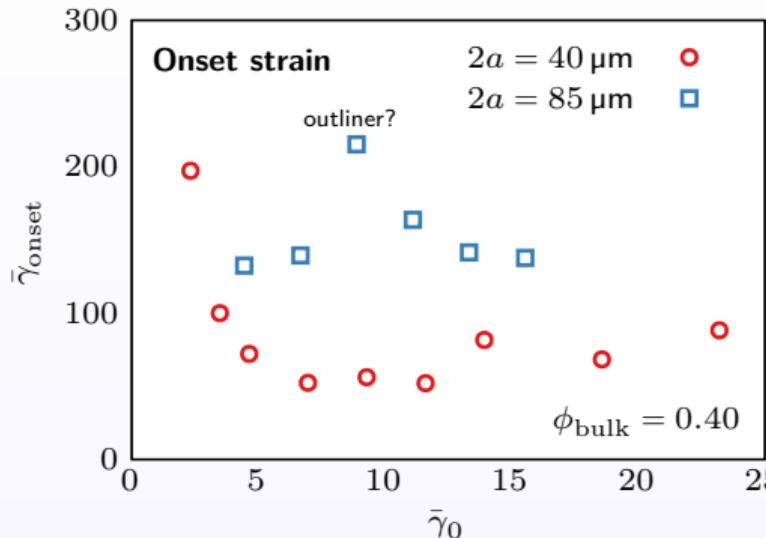
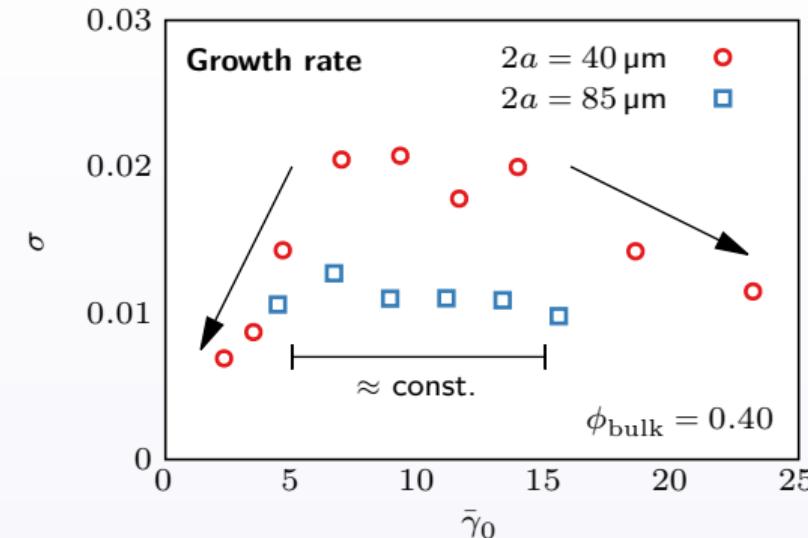
- ▶ Fit to $\log(A_{V_y})$ of a piecewise function: constant - linear - constant.
- ▶ The perturbations become apparent above a global strain $\bar{\gamma}_{\text{onset}}$.
- ▶ Then, they grow by a factor σ per unit of strain.

Onset strain and growth rate vs oscillation amplitude



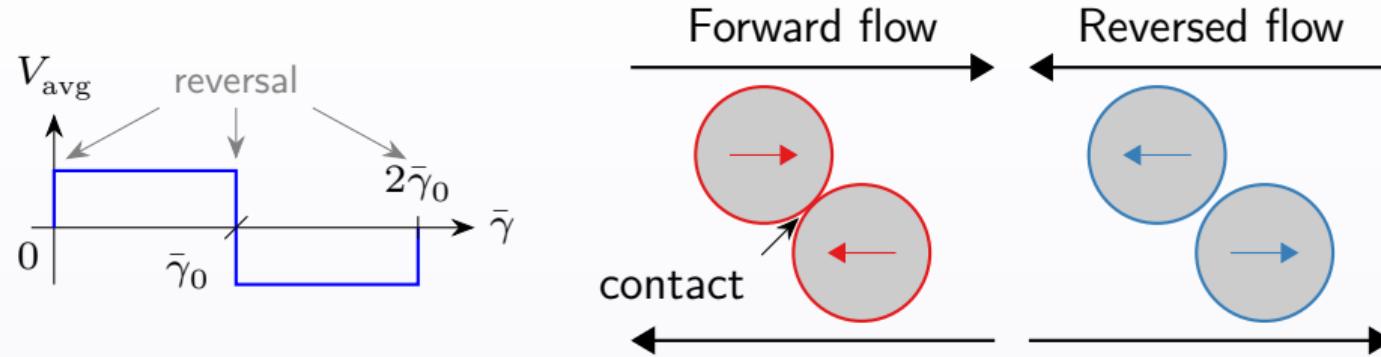
- ▶ $5 < \bar{\gamma}_0 < 15$: \approx constant grow rates γ and onset strains $\bar{\gamma}_{\text{onset}}$ (both sizes).
- ▶ $\bar{\gamma}_0 < 5$: delayed onset and reduced growth ($40 \mu\text{m}$).
- ▶ $\bar{\gamma}_0 > 15$: delayed onset? and reduced growth ($40 \mu\text{m}$).

Onset strain and growth rate vs oscillation amplitude



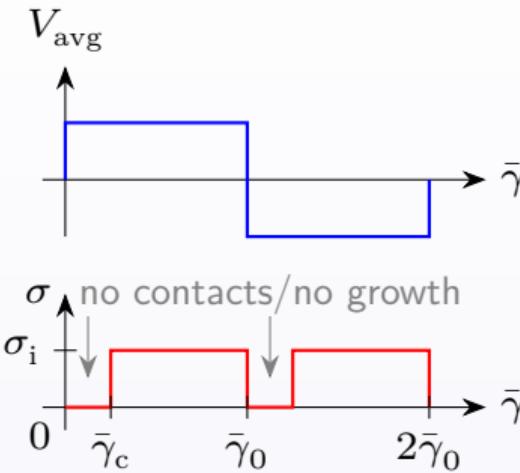
- ▶ $5 < \bar{\gamma}_0 < 15$: \approx constant grow rates γ and onset strains $\bar{\gamma}_{\text{onset}}$ (both sizes).
- ▶ $\bar{\gamma}_0 < 5$: delayed onset and reduced growth ($40 \mu\text{m}$). ← Why?
- ▶ $\bar{\gamma}_0 > 15$: delayed onset? and reduced growth ($40 \mu\text{m}$).

Interpretation of the measured growth rates



- ▶ Particle contacts \rightarrow irreversible behavior \rightarrow instability.
- ▶ After reversal, particles lose contacts...
- ▶ ...and recover them after accumulating a strain $\gamma_c \sim 1$.

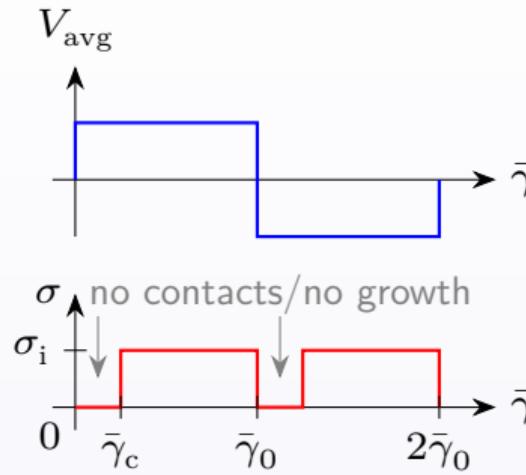
Interpretation of the measured growth rates



Effective growth rate during
one half oscillation:

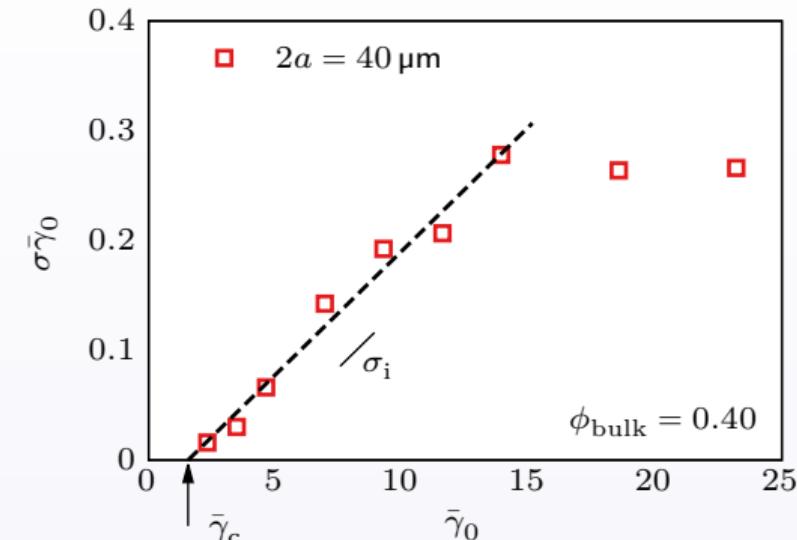
$$\sigma = \frac{\bar{\gamma}_0 - \bar{\gamma}_c}{\bar{\gamma}_0} \sigma_i$$

Interpretation of the measured growth rates



Effective growth rate during one half oscillation:

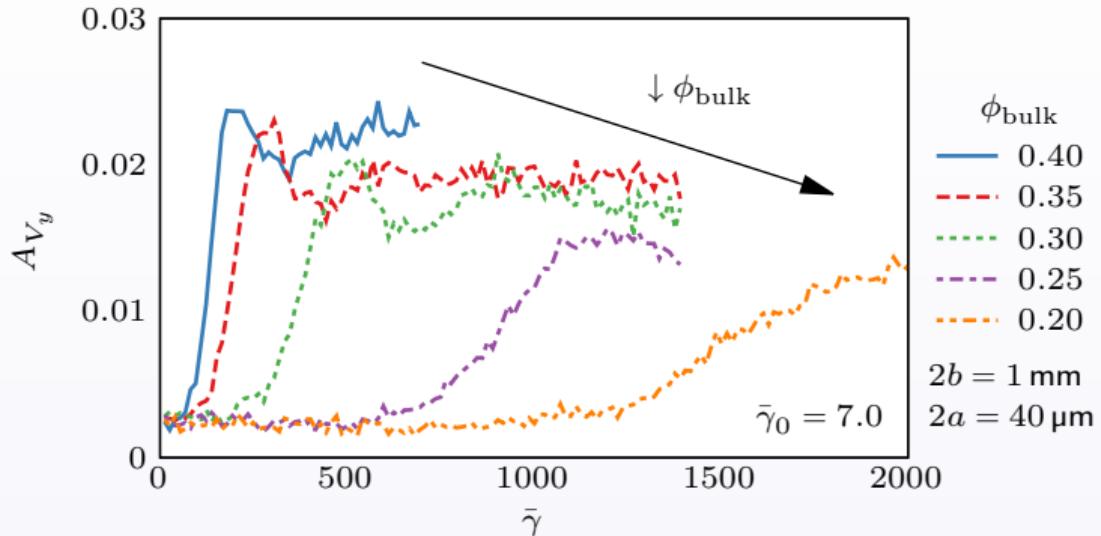
$$\sigma = \frac{\bar{\gamma}_0 - \bar{\gamma}_c}{\bar{\gamma}_0} \sigma_i$$



$\sigma\bar{\gamma}_0$: growth factor during one half oscillation.

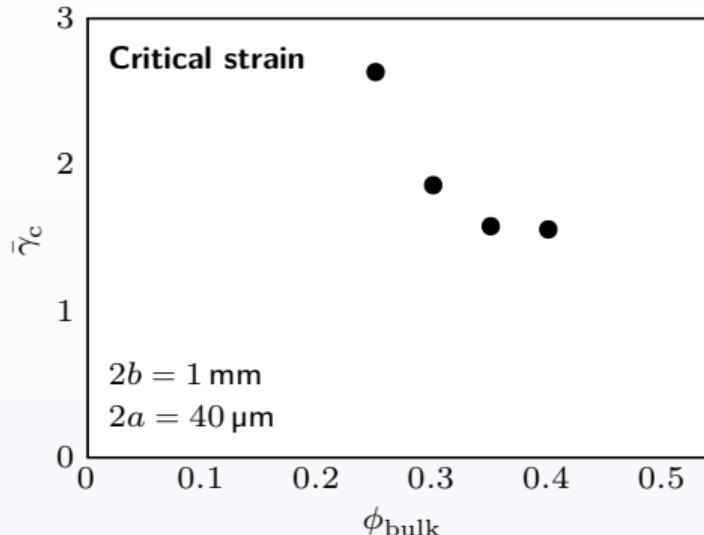
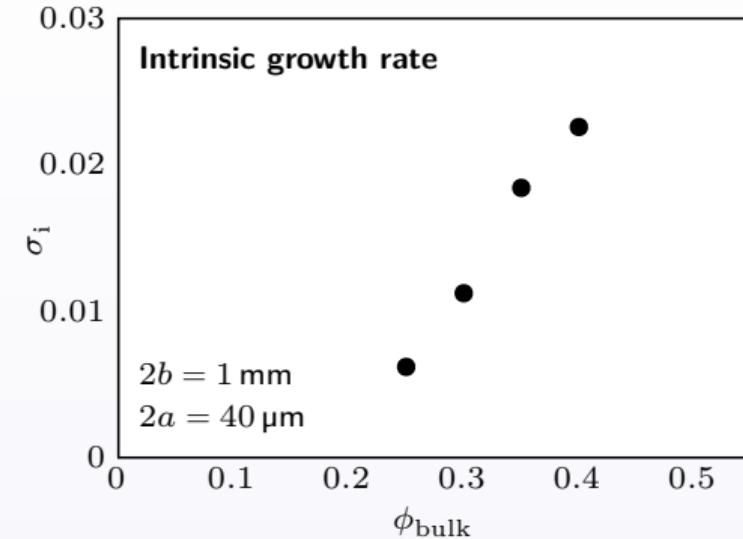
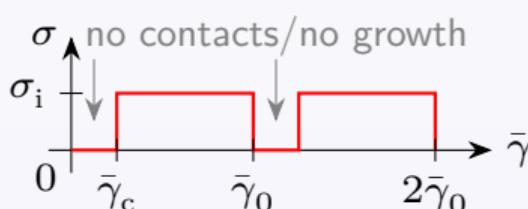
- ▶ $\bar{\gamma}_0 < \bar{\gamma}_c$: no growth. $\bar{\gamma}_c$ is a **threshold**.
- ▶ $\bar{\gamma}_0 > 15$: another process?

Influence of the particle volume fraction



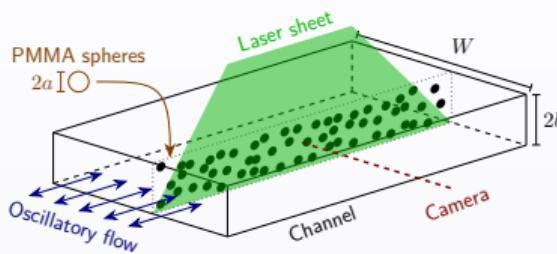
- ▶ Lower particle concentration
 - Lower collision rate
 - Slower progress in irreversible processes.
- ▶ Slight decrease of the maximum amplitude.

Influence of the particle volume fraction

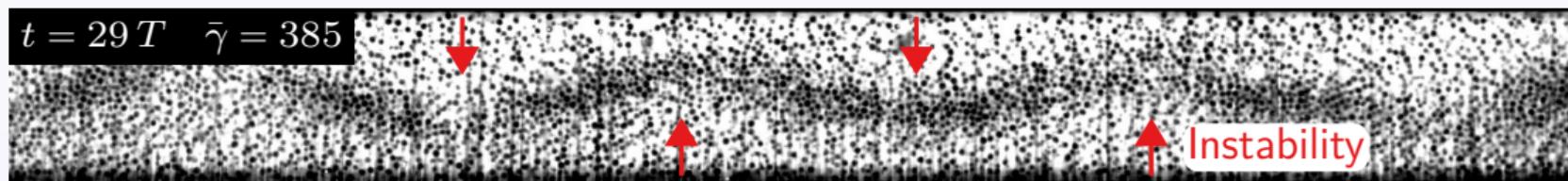


- ▶ $\bar{\gamma}_c$ decreases with ϕ_{bulk} .
The characteristic strain for **microstructure** reorganization decreases with ϕ (local).
- ▶ σ_i increases with ϕ_{bulk} ,
maybe like the particle diffusivity.

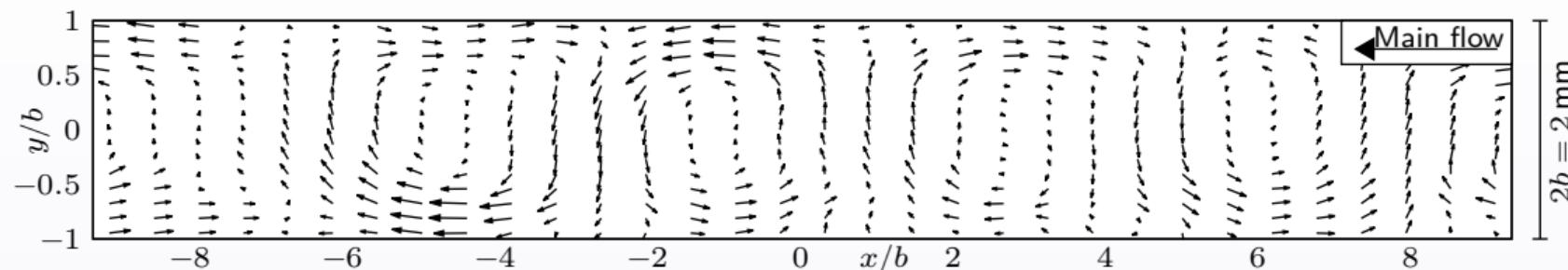
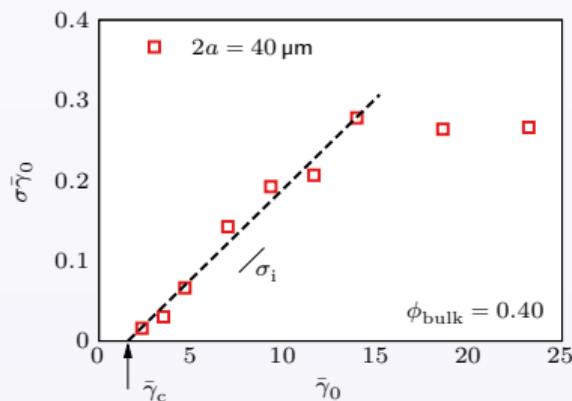
Summary



- ▶ Experiments with oscillating suspensions inside narrow channels (Hele-Shaw cells). $Re \approx 0$.
- ▶ Tracking of individual particles.
- ▶ Instability characterized by perturbations of the particle concentration and velocity fields periodic along the flow direction.

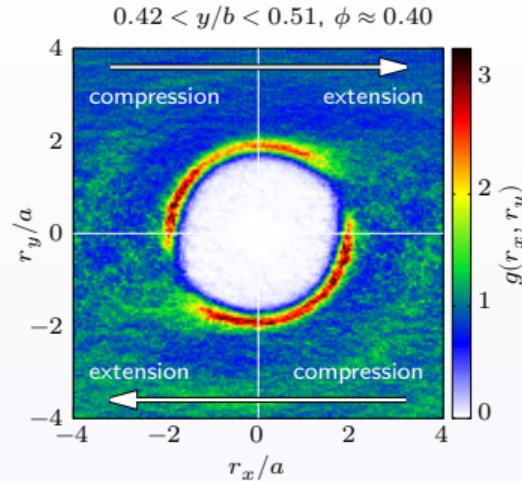
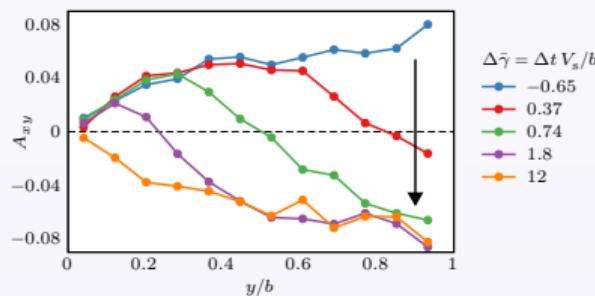


Summary



- ▶ The instability induces alternating recirculation rolls, convected and reversed by the main flow.
- ▶ The amplitude of this secondary flow grows \approx exponentially with a rate σ .
- ▶ Threshold oscillation amplitude $\bar{\gamma}_c \sim 1$ due to the loss of particle contacts after each reversal.

Summary



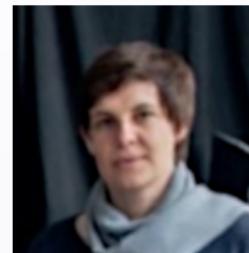
- ▶ Microstructure: particle pairs in compression are more common than in extension (steady regime).
- ▶ After reversal, the microstructure reorganizes after accumulating a local strain $\gamma \sim 1$.
- ▶ The microstructure influences properties like the normal stresses.
- ▶ Its transient and inhomogeneous variations after reversal may be the keys to explain the instability.

Thanks

To my thesis directors/supervisors:

Irene
IPPOLITO

Georges
GAUTHIER



Lucrecia
ROHT

Jean-Pierre
HULIN

Dominique
SALIN

German
DRAZER

To my collaborators:

To the members of the jury.

And to everyone for their attention!