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Résumé : Cette thèse étudie les écoulements
oscillants de suspensions de sphères non
browniennes dans des canaux étroits. Les
écoulements de suspensions sont répandus
dans la nature et les systèmes industriels et bio-
logiques, et les écoulements oscillants sont in-
téressants en raison de l’influence des inver-
sions de flux. Des expériences antérieures au
laboratoire FAST et au Grupo de Medios Poro-
sos ont montré que l’écoulement oscillant de
suspensions dans des cellules de Hele-Shaw
peut être instable, entraînant une modulation
de la concentration en particules le long du ca-
nal. Un tel comportement était nouveau et a
motivé la présente étude.

Notre objectif dans ce travail a été de com-
prendre cette instabilité à partir des varia-
tions temporelles des champs de vitesse et de
concentration, ainsi que de la microstructure
de la suspension, à la fois à l’échelle d’une pé-
riode d’oscillation et à celle du développement
de l’instabilité. À cette fin, nous avons utilisé
une technique optique permettant de suivre les
particules individuelles à l’intérieur de la sus-
pension et d’obtenir à la fois des statistiques
microscopiques (distributions de paires) et des
grandeurs macroscopiques (concentration lo-
cale et vitesse des particules).

Nous avons utilisé des sphères de PMMA
(acrylique) en suspension dans un liquide
newtonien avec des fractions volumiques
moyennes de particules ϕb = 0,2−0,4. Les par-
ticules, de diamètre 40 et 85µm, étaient non-
browniennes. Le fluide suspendant était une
solution aqueuse de même densité et indice
de réfraction que les particules, afin d’annuler
la sédimentation et de rendre la suspension
transparente. L’écoulement avait lieu dans des
canaux rectangulaires saturés par la suspen-
sion (longueur = 150 mm, épaisseur 2b = 1 ou
2 mm, largeur = 10 mm correspondant respec-
tivement aux directions x, y et z). Une pompe
à seringue induisait des variations périodiques
de débit en onde carrée (période T = 2 − 20 s)
entraînant des amplitudes de déplacement

A = 2 b − 20 b et des nombres de Reynolds
inférieurs à 1. L’utilisation d’un fluide fluores-
cent et l’éclairage du canal par un plan laser
mince, parallèle à sa longueur et à son épais-
seur, permettaient d’observer les particules et
de déterminer leur position, vitesse et concen-
tration locale.

Au début de chaque expérience, la fraction
volumique locale ϕ et la composante de vitesse
Vx étaient constantes avec x et la composante
transversale Vy était ≈ 0. Après quelques oscil-
lations, et toujours avec Vy ≈ 0, la fraction lo-
cale ϕ devenait plus grande au centre (y = 0)
qu’à proximité des parois (y = ±b) en raison
de la migration des particules induite par le ci-
saillement, entraînant une viscosité plus élevée
dans cette région et un profil de vitesse aplati.
Ensuite, ϕ cesse de croitre et une composante
d’écoulement secondaire transverse Vy pério-
dique d’une longueur d’onde ≈ 7 b apparaît le
long de x : elle correspond à une séquence
de cellules de recirculation de directions alter-
nées changeant aux inversions du flux moyen
et convectées par celui-ci. Simultanément, la
bande de haute concentration près de y =
0 développe des distorsions transversales de
même longueur d’onde qui, elles aussi, sont
convectées par les oscillations du flux moyen.

L’amplitude à la fois de la vitesse d’écoule-
ment secondaire et des distorsions de la bande
de haute concentration augmente à peu près
exponentiellement jusqu’à saturer. Le taux de
croissance correspondant augmente avec la
fraction volumique moyenne ϕb et devient nul
en dessous d’une valeur seuil A/b ≈ 1 de l’am-
plitude de déformation. Ces deux observations
suggèrent que l’instabilité résulte des interac-
tions irréversibles entre particules, probable-
ment par des contacts solides, et que l’inversion
de flux joue un rôle important dans son déve-
loppement. Lamicrostructure de la distribution
de paires de particules avant l’apparition de l’in-
stabilité montre une asymétrie avec un excès
transitoire de paires se séparant après chaque
inversion de flux.
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Abstract: This thesis studies oscillatory flows
of neutrally-buoyant non-Brownian spheri-
cal particles suspensions in narrow channels.
Flows of suspensions are widespread in na-
ture, and industrial and biological systems, and
the case of oscillatory flows is particularly inter-
esting in view of the possible influence of flow
reversals. Previous experiments in our labo-
ratory have shown that the oscillatory flow of
suspensions inside Hele-Show cells can be un-
stable, resulting in a modulation of the particle
concentration along the length of the channel.
Such a behavior was novel and motivated the
present study.

Our objective in this work has been to un-
derstand this instability from the time varia-
tions of the velocity and concentration fields
and from those of the microstructure of the
suspension both at the time scale of an os-
cillation period and at that of the develop-
ment of the instability to determine the pa-
rameters controlling this onset. For this pur-
pose, we used an optical technique allowing us
to track individual particles inside the suspen-
sion and calculate both microscopic statistics
(pair distributions) characterizing spatial corre-
lations of the particle distribution and macro-
scopic quantities (local concentration and ve-
locity) and their spatial variations and time de-
pendence.

We used PMMA (acrylic) spheres sus-
pended in a Newtonian liquid with bulk parti-
cle volume fractions ϕb between 0.2 and 0.4.
The particles were spherical with diameters of
40 and 85µm and, therefore, non-Brownian.
The suspending fluid was an aqueous solu-
tion of same density and refractive index as
the particles, in order to cancel sedimentation
and render the suspension transparent. Flow
took place in rectangular channels saturated
with the suspension (length = 150mm, thick-
ness 2b = 1 or 2mm, width = 10mm corre-
sponding respectively to the x, y and z direc-
tions). A programmable syringe pump induces
periodic square wave flow rate variations (peri-

ods T = 2−20 s) resulting in displacement am-
plitudes A = 2 b−20 b and Reynolds numbers
below 1. Using a fluorescent fluid and illumi-
nating the channel by a thin laser plane (20µm)
parallel to its length and thickness and located
in the middle of the thickness allows us to ob-
serve the particles as dark circles and deter-
mine their individual location and velocity and
their local concentration.

At the beginning of each experiment, the
average local volume fraction ϕ and the veloc-
ity component Vx are constant with x and the
transverse component Vy is ≈ 0. Then, after
a few oscillations, and still with Vy ≈ 0, the
local fraction ϕ becomes larger in the center
(y = 0) than near the walls (y = ±b) due to
shear-induced particle migration, resulting in a
higher viscosity in this region and a blunted ve-
locity profile. The rate of migration appears to
be strongly related to the development of the
instability. Then, the increase of ϕ levels off and
a periodic transverse secondary flow compo-
nent Vy of wavelength ≈ 7 b along x appears:
it corresponds to a sequence of recirculation
cells of alternating directions changing at mean
flow reversals and convected by it. Simultane-
ously, the band of high particle concentration
near y = 0 develops transverse distortions of
same wavelength which, too, are convected by
the oscillations of the mean flow.

The amplitude of both the secondary flow
velocity and the distortions of the high ϕ band
increase roughly exponentially until a satura-
tion is reached. The corresponding growth rate
increases with the bulk volume fraction ϕb and
becomes zero below a threshold value A/b ≈
1 of the strain amplitude. Both observations
suggest that the instability is driven by irre-
versible particle interactions, most probably by
solid contacts, and that the flow reversal plays
an important part in its development. The mi-
crostructure of the particle pair distribution be-
fore the onset of the instability is shown to be
asymmetric with a transient excess of separat-
ing pairs after each flow reversal.
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Título: Transporte, dispersión y reversibilidad de un trazador en un flujo oscilante de suspensio-
nes
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Resumen: Esta tesis estudia el flujo oscilante
de suspensiones de partículas no brownianas
en canales estrechos. El flujo de suspensiones
está presente en una gran variedad de situa-
ciones naturales e industriales, y los flujos os-
cilantes son interesantes, en particular, por la
influencia de las inversiones del flujo. Los expe-
rimentos previos realizados en nuestros labo-
ratorios mostraron que los flujos oscilantes de
suspensiones dentro de celdas de Hele-Shaw
pueden ser inestables, resultando en una mo-
dulación de la concentración de partículas a lo
largo de la celda. Este comportamiento resultó
novedoso y motivó el presente estudio.

Nuestro objetivo en este trabajo es enten-
der esta inestabilidad a partir de las variacio-
nes espaciales y temporales de variables ma-
croscópicas (campos de velocidad y de concen-
tración de partículas) y microscópicas (distribu-
ción de pares de partículas), tanto a la escala
temporal de una sola oscilación, como durante
el desarrollo de la inestabilidad, determinando
así los parámetros que la controlan. Utilizamos
técnicas experimentales que nos permitieron
observar y rastrear partículas individuales den-
tro de la suspensión, calculando las variables
antes mencionadas mediante procedimientos
estadísticos.

Las suspensiones se componen de partí-
culas esféricas de PMMA (acrílico) suspendidas
en líquidos newtonianos. Las partículas ocupan
una fracción ϕb de entre 0,2 y 0,4 del volumen
total. Se utilizaron partículas con diámetros de
40 y 85µm, lo suficientemente grandes para
considerarlas no brownianas. Los líquidos son
soluciones acuosas con la misma densidad e
índice de refracción que las partículas, evitan-
do así efectos de sedimentación y obteniendo
suspensiones transparentes. Se estudia el flujo
dentro de canales rectangulares cerrados con
largo de 150 mm, espesor 2b de 1 o 2 mm y an-
cho de 10 mm (respectivamente, direcciones x,
y, z). Una bomba de jeringas induce flujos pe-
riódicos con forma de onda cuadrada en el cau-
dal (periodos entre 2 y 20 s), resultando en am-

plitudes de desplazamiento A entre 2 b y 20 b y
números de Reynoldsmenores a 1.Mediante el
uso de fluorescencia y un plano láser más fino
que las partículas, observamos a lasmismas en
un corte ubicado en el medio del ancho, para-
lelo al largo y el espesor.

Al comienzo de cada experimento, la frac-
ción de volumen local ϕ (concentración de par-
tículas) y la velocidad longitudinal Vx son uni-
formes en la dirección x, mientras la velocidad
transversal Vy es≈ 0. Luego de algunas de osci-
laciones, y todavía con Vy ≈ 0, observamos que
la fracción local ϕ se ha vuelto marcadamente
más grande en el centro del espesor (y = 0)
como consecuencia de la migración de partícu-
las hacia allí inducida por el flujo de corte. Esto
resulta en una mayor viscosidad en el centro y
perfiles de velocidad más planos. Luego, el in-
cremento de ϕ en el centro se detiene y apa-
rece un flujo secundario con velocidades trans-
versales Vy no nulas y periódicas en x con una
longitud de onda ≈ 7 b: el mismo corresponde
a una secuencia de celdas de recirculación que
son arrastradas por el flujo principal y cambian
de dirección con el mismo. Simultáneamente,
la región de alta concentración de partículas
cerca de y = 0 adquiere una forma ondulan-
te con la misma longitud de onda. Este patrón
también es arrastrado por el flujo principal.

Las amplitudes del flujo secundario y del
patrón ondulante en ϕ aumentan en forma
aproximadamente exponencial hasta saturar.
La correspondiente tasa de crecimiento au-
menta con la fracción volumétrica promedio ϕb

y disminuye hasta cero al reducir la amplitud
de oscilación a A ≈ b. Estas observaciones nos
sugieren que la inestabilidad está inducida por
interacciones irreversibles entre las partículas,
probablemente contactos sólidos, y que la in-
versión periódica de la dirección de flujo juega
un papel importante. Observaciones a la esca-
la de las partículas muestran una microestruc-
tura anisotrópica que debe reorganizarse cada
vez se invierte la dirección de flujo.
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Chapter 1

Introduction

The topic of this thesis is the study of particle suspensions in oscillatory flows through small
channels. A particle suspension can be defined as a fluid with particles dispersed in its volume.
Usually, this means small solid bodies in a liquid, although drops of an immiscible liquid or
even gas bubbles may result in a system with similar characteristics. A household example
is the mixture of flour with a large proportion of water (Létang, Piau, and Verdier 1999).
Another example can be found inside ourselves: our blood is composed of different cells (the
solid bodies) in a liquid called plasma (Baskurt and Meiselman 2003). Going towards one of
the original motivations of this work, we have the mixtures of soil and water. Understanding
the downhill flow of mud after heavy rain can be very important for people living in some
regions (Kostynick et al. 2022). At a smaller scale, water can flow underground through
networks of small crevices called fractures, dragging solid particles from the surrounding soil.
Such situations are of practical relevance for the extraction of geothermal energy, oil, and gas
from the ground (Yang et al. 2022).

All the mentioned cases have in the common the presence of a large fraction of solid
particles in the fluid, resulting in significant departures from the behavior of the base fluid.
Another characteristic of such suspensions is that they can be very complex to study because
the fluid or the particles alone already present complex behaviors on its own: flour particles
are porous and absorb water, blood cells are deformable, and underground, oil, water and
solids may form a three-phase system flowing through a complex network of fractures. The
objective of this work is to answer questions relevant to all suspensions by studying a model
system which retains only the most prominent characteristics.
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During the course of this doctorate, experiments were performed using micrometric plas-
tic spheres as particles, and a fluid of same density and optical index as the particles so
that the mixture is transparent and the particles remain suspended indefinitely. We studied
the resulting suspension flow inside transparent, straight channels with apertures of a few
millimeters and lengths of a few tens of centimeters. Such an artificial preparation may seem
too remote from the previous natural and industrial examples, but nevertheless, it presents
the most distinctive attributes of suspensions, while allowing us to control, visualize and
understand its behavior during the experiments.

Specifically, we observed the trajectories of individual particles in order to obtain si-
multaneously information on the particle organization at their scale (microstructure), and
macroscopic measurements of particle concentration and velocity fields. Another important
characteristic of our experiments is the use of oscillatory flows. The reason is two fold. First,
suspensions flowing over long distances in channels are notorious for inducing an inhomoge-
neous particle distribution, then, in order to reach a (quasi) steady state in short channels,
we used oscillatory flows where a suspension can accumulate arbitrarily long displacements
in a confined space. Second, the behavior of suspensions may be altered in several ways
depending on the oscillation amplitude, including a transition from irreversible to reversible
particle trajectories. An understanding of these changes can help in the modelling of more
general transient behaviors, and may have direct applications such as improving the mixing
of substances (Souzy, Pham, and Metzger 2016) or reducing the energy requirements for the
flow of suspensions (Ness, Mari, and Cates 2018).

In the course of this chapter, the main characteristics of suspensions will be introduced
along with some theoretical frameworks when needed. In Chapter 2, a detailed description of
the experimental setup and how it was realized will be given. In Chapters 3-5, the results will
be presented divided in several parts: steady flow characterization, response to flow reversal
and unstable oscillatory flow. Finally, in Chapter 6, the main conclusions and future lines of
work will be summarized.
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1.1. Particles

There are a wide variety of particle types. The material may be deformable, like liquid drops
and the red blood cells, or it may be rigid. Restricting ourselves to the latter case, they
may be porous and allow the fluid to penetrate inside (like coffee grains), or be impermeable
(like sand grains). We will focus on the rigid, impermeable case. Then, we may consider the
particle shape. Particles with elongated forms, like fibers, tend to align with the flow, and
introduce a time-varying behavior in the suspension (Stover, Koch, and Cohen 1992). Here,
we study instead the case of highest symmetry, spheres, greatly simplifying the behavior while
retaining similarities to irregular particles with aspect ratio close to one, like sand grains (D.
Leighton and Acrivos 1986). Even if all the particles share the same shape, they may have
different sizes, in which case segregation can be observed in certain flows (Lyon and Leal
1998b). We choose again the simplest case: monodisperse particles, that is, all with roughly
the same size. More concretely, we will present results for monodisperse spherical particles
with diameters of 40 and 85µm.

1.2. Fluid

For this work, we are interested in incompressible Newtonian liquids as suspending fluids.
Those can be modelled by continuity and Navier-Stokes equations, but here we will consider
more general equations that can be used to model also non-Newtonian fluids, since particle
suspensions can behave like those. First, we have the continuity of the velocity field 𝒖,1

∇ ⋅ 𝒖 = 𝜕𝑥𝑢𝑥 + 𝜕𝑦𝑢𝑦 + 𝜕𝑧𝑢𝑧 = 0, (1.1)

where 𝜕𝑖 is the spatial derivative operator along the direction 𝑖. Second, the balance of
momentum or Cauchy equation,

𝜌 (𝜕𝑡𝒖 + 𝒖 ⋅ ∇𝒖) = 𝒃 +∇ ⋅ 𝝈, (1.2)

1Bold letters represent vectors and tensors in this work. For example, 𝒖 has three Cartesian components:
𝑢𝑥, 𝑢𝑦, and 𝑢𝑧.
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where 𝜌 is the fluid density, 𝜕𝑡 is the temporal derivative, 𝒃 is the sum of the bulk (volume)
forces on the element of fluid, and 𝝈 is the second-order stress tensor which corresponds to
the surface forces between adjacent elements of fluids. Both 𝒃 and 𝝈 may depend on 𝒖, 𝜌 or
any other property of the fluid or the environment.

An important class of fluids are those called Newtonian, for which the stress tensor takes
the form

𝜎𝑖𝑗 = −𝑝 𝛿𝑖𝑗 + 2𝜂𝐸𝑖𝑗, (1.3)

where 𝑝 is the fluid pressure, 𝜹 is the Kronecker delta, 𝜂 is the fluid viscosity, and 𝑬 is the
strain-rate tensor,

𝐸𝑖𝑗 = 1
2(𝜕𝑖𝑢𝑗 + 𝜕𝑗𝑢𝑖). (1.4)

Then, Eq. (1.2) takes the form of the Navier-Stokes equation for an incompressible fluid:

𝜌 (𝜕𝑡𝒖 + 𝒖 ⋅ ∇𝒖) = 𝒃 −∇𝑝 +∇ ⋅ (𝜂∇𝒖). (1.5)

In Sec. 1.3, we will see that it is possible to model the whole suspension as a continuous
fluid with the previous equations, although Eq. 1.3 will have to be modified to account for
the non-Newtonian behavior of suspensions.

Simple shear flow

Locally, any incompressible flow can be described by a velocity field 𝒖 which depends linearly
on the position vector 𝒙, with symmetric and anti-symmetric components proportional to
the strain rate tensor and the local vorticity, respectively (Batchelor 1967, chapter 2). A
particularly important case, in part because it is simple to set up in experiments, is that of
simple shear flows where

𝒖(𝑦) = ̇𝛾𝑦𝒙̂. (1.6)

Here, the directions 𝑥, 𝑦, 𝑧 are the flow, gradient, and vorticity directions respectively; 𝒙̂ is
the unit vector pointing in the 𝑥 direction, and ̇𝛾 is called shear rate (see Fig. 1.1). In most
of our studies, it is not so important how fast the fluid is travelling with respect to a fixed
frame of reference (𝑢𝑥), but how large the local velocity gradient ̇𝛾 is.
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𝑥

𝑦
𝒖 = ̇𝛾𝑦𝒙̂

Figure 1.1: Simple shear flow.

1.2.1. Inertia, Reynolds number and Stokes equation

The ratio of magnitudes between the left hand side of Eq. (1.5) (inertial term) and the last
term on the right (viscous term) can be estimated with the Reynolds number

Re = 𝜌𝑈2/𝐿
𝜂𝑈/𝐿2 = 𝜌𝑈𝐿

𝜂 , (1.7)

where 𝑈 and 𝐿 are velocity and length scales characteristic of the system under study.

When there are particles inside the fluid, they introduce an additional length scale (e.g.
particle radius 𝑎), and we may be interested both in a flow Reynolds number Re and a particle
one Rep. Given a characteristic shear rate ̇𝛾, we can use 𝐿 = 𝑎 and 𝑈 = ̇𝛾𝑎 to obtain

Rep = 𝜌 ̇𝛾𝑎
𝜂 (1.8)

In suspensions, the particles tend to be small compared to other relavant distances and
Rep < Re is the most common situation.

When both Re and Rep are small, one can consider the flow to be inertialess and disregard
the corresponding term in Eq. (1.5), reducing it to the Stokes equation:

0 = 𝒃 −∇𝑝 +∇ ⋅ (𝜂∇𝒖). (1.9)

This equation has two interesting properties. First, it is linear in its variables (𝒖, 𝑝), making
its resolution much easier. Second, the resulting flows are reversible: if we invert instanta-
neously the velocity and the bulk forces (𝒖 → −𝒖, 𝒃 → −𝒃), the evolution of a fluid that
follows this equation will exactly retrace its steps. In the following sections, we will see that,
altought the Stokes equation remains useful to model the fluid phase of suspensions, direct
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interactions between the particles can break this temporal symmetry, resulting in some of
the most striking behaviors of suspensions.

1.3. Suspensions as effective fluids

A suspension may be modeled as a Newtonian fluid with an effective viscosity 𝜂s that depends
on the particle concentration, usually defined by the fraction 𝜙 of the suspension volume
occupied by particles. Of course, this makes sense only at length scales much larger than the
particle size. For dilute suspensions (𝜙 ≲ 0.04),

𝜂s(𝜙) = 𝜂f (1 + 5
2𝜙), (1.10)

where 𝜂f is the viscosity of the suspending fluid, assumed to be Newtonian. This expression
was reached by Einstein (1905) considering the perturbation to the flow made by each particle
independently and, then, multiplying by the concentration. Corrections of higher order in 𝜙
require knowledge of the relative positions of the particles, which in turn are affected by the
type of bulk flow (Batchelor and Green 1972). The dependence of the parameters on the flow
type is characteristic of non-Newtonian fluids, and this is the first sign that a more complex
model will be required to fully capture the suspension behavior.

Nonetheless, the viscosity under steady shear flow is well characterized and several em-
pirical formulas have been proposed (see the review of Guazzelli and Pouliquen 2018). In
particular, the relation proposed by Maron and Pierce (1956) is simple and fits well the
available data:

𝜂s(𝜙) = 𝜂f (1 − 𝜙/𝜙𝐽)−2. (1.11)

Here, 𝜙J is the jamming fraction: the volume fraction at which the particles cannot move
relative to each other, making the suspension flow essentially impossible and, hence, the
viscosity diverges. Figure 1.2 shows a plot of this formula along with different measurements
and other estimations.

The jamming fraction can be defined by geometrical constraints, for example, rigid monodis-
perse spheres at the random-close-packing fraction (𝜙RCP ≈ 0.64) do not have enough phys-
ical space between them to move under a shearing flow. On the other hand, 𝜙J can take
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Figure 1.2: Comparison of measurements, simulations and laws for the suspension relative viscosity
𝜂s/𝜂f as a function of the relative volume fraction 𝜙/𝜙J (𝜙𝑐 = 𝜙J). Taken from Guazzelli and Pouliquen
(2018), figure 4b.

smaller values if the particles get jammed due to the frictional interaction between them (see
Sec. 1.4.2). In this case, the value of 𝜙J may decrease with the shear stress as more particles
form contacts, making the suspension shear thickening (𝜂s grows with increasing 𝜎𝑥𝑦, see next
section).

1.3.1. Non-Newtonian behavior

The behavior of flowing suspensions is not fully described just by the previous viscosity
function 𝜂s(𝜙), instead, measurements show some departures from Eq. 1.3 corresponding to
non-Newtonian behavior.

Shear thinning and thickening

Suspensions can be both shear thinning and shear thickening, that is, 𝜂s might decrease
or increase with increasing shear rate ̇𝛾, respectively. For colloidal suspensions (particle size
≲ 10 µm), the shear thinning and thickening behavior can alternate as the shear rate increases,
like in the curves 𝜂s( ̇𝛾) displayed in Fig. 1.3a. For very high concentrations (𝜙 ≥ 0.51 in this
case), a discontinuous increase of the viscosity with the shear rate is observed, while at smaller
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a b

Figure 1.3: a) Suspension viscosity 𝜂s as a function of shear rate ̇𝛾 for suspensions of 1.25µm PVC
spheres suspended in dioctyl phthalate. Measurements from Hoffman (1972), figure from Stickel and
Powell (2005). b) Relative viscosity 𝜂s/𝜂f versus the shear stress 𝜏 = 𝜂s ̇𝛾 for suspensions of 40µm
polystyrene (PS) spheres in silicon oil. From Lobry et al. (2019).

concentrations the change is continuous. Given the shear stress 𝜏 = 𝜂s ̇𝛾, a critical stress 𝜏c
can be defined for both forms of shear thickening behavior and, from an analysis of previous
works, Barnes (1989) concluded that 𝜏c ∝ 𝑎−2, where 𝑎 is the radius of monodisperse spheres.
For this reason, shear thickening is usually not observed for larger particles (most flows will
have 𝜏 > 𝜏c), instead, only shear-thinning behavior can be seen, as show in Fig. 1.3b for
spheres of diameter 2𝑎 = 40 µm. Possible explanations for these phenomena usually consider
short range interactions between particles, like repulsive forces for colloidal particles and
solid contacts for large particles (Lemaire et al. 2023). More on these interactions will said
in Sec. 1.4.

In our experiments with channel flows, both the shear rate and the volume fraction vary in
space so, even if our suspensions (PMMA spheres with diameters of 40 and 85µm) might be
slightly shear thinning like other similar ones (Blanc, Peters, and Lemaire 2011; Gamonpilas,
Morris, and Denn 2016), in practice, the variations of viscosity with the shear rate would be
negligible compared to those induced by the variations of the volume fraction (see Sec. 1.6.2
for more details on the kind of flow conditions we study).

Normal stress differences

For incompressible Newtonian fluids, Eq. 1.3 implies that the diagonal components of the
stress tensor (𝜎𝑥𝑥, 𝜎𝑦𝑦, 𝜎𝑥𝑥) are all equal to −𝑝, an isotropic pressure applied on the fluid
element under analysis. These components are called normal stresses, and it has been found
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that in various complex fluids they may be different from each other, meaning that those fluids
exert an anisotropic stress while flowing. In order to study the non-Newtonian behavior of a
fluid, we are interested in the normal stress differences:

𝑁1 = 𝜎𝑥𝑥 − 𝜎𝑦𝑦, 𝑁2 = 𝜎𝑦𝑦 − 𝜎𝑧𝑧. (1.12)

Here 𝑥, 𝑦, and 𝑧 correspond to the flow, gradient, and vorticity directions of the simple shear
flow displayed in Fig. 1.1.

A well-studied example is solutions of elastic polymers. Those tend to elongate with the
flow, providing an additional tension in the flow direction which results in a positive 𝑁1 and
a small 𝑁2 (Bird, Armstrong, and Hassager 1987). A consequence of this can be observed
directly in experiments where a rod is partially submerged into a polymeric solution and
rotated: the solution climbs up the rod and the free surface becomes curved (Weissenberg
effect). From experiments like this and other rheological measurements, it is possible to
measure linear combinations of 𝑁1 and 𝑁2 and, finally, infer their separate values as functions
of the shear rate and other relevant parameters.

Zarraga, Hill, and Leighton Jr (2000) performed the above experiment with a suspension
of spheres and found that the free surface depressed around the rod, a feature corresponding
to a negative value of 𝑁1+ 1

2𝑁2. From this experiment, along with multiple other rheological
experiments, they concluded that the suspension viscosity 𝜂s decreases slightly with the shear
rate ̇𝛾 (shear thinning behavior) and increases sharply with the volume fraction 𝜙, like in
Fig. 1.2. Moreover, they found that both 𝑁1 and 𝑁2 are negative, roughly proportional to the
absolute value of the shear stress 𝜎𝑥𝑦 = 𝜂𝑠 ̇𝛾, and decrease with the volume fraction. Similar
results were found by Dai et al. (2013), who complemented their rheological measurements
with the observation of the curvature of the free surface of a suspension flowing down a
trough. Figure 1.4 displays measurements of −𝑁1/|𝜎𝑥𝑦| and −𝑁2/|𝜎𝑥𝑦| as functions of 𝜙
obtained from multiple sources.

To incorporate the above observations into the suspension rheology, both Morris and
Boulay (1999) and Zarraga, Hill, and Leighton Jr (2000) proposed similar phenomenological
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a b

Figure 1.4: Normal stress differences 𝑁1 (a) and 𝑁2 (b) obtained in different experiments and
simulations. Both are shown with the sign inverted and normalized by the absolute shear stress
𝜏 = |𝜎𝑥𝑦|. Taken from Dai et al. (2013).

models where the suspension stress has the form

𝜎𝑠
𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 2𝜂s(𝜙)𝐸𝑖𝑗 − 𝜂f𝜂n(𝜙) |𝑬|𝑄𝑖𝑗. (1.13)

The first two terms are equivalent to those found for Newtonian fluids, with 𝑝, the fluid
dynamic pressure, and 𝜂s, the suspension viscosity which may take the form of an expression
like Eq. 1.11. The last term accounts for the particle contribution to the pressure and the
normal stress differences. Here |𝑬| = (𝐸𝑖𝑗𝐸𝑗𝑖)1/2 is a measure of the shear rate, and 𝑸 is the
tensor

𝑸 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 + 𝛼1 0 0
0 1 0
0 0 1 − 𝛼2

⎞⎟⎟⎟⎟⎟⎟
⎠

, (1.14)

where 𝛼1 and 𝛼2 are constants of the order of 0.3 which account for the relative strengths of
𝑁1 and 𝑁2. Finally, 𝜂n is an increasing function of the volume fraction that diverges at the
jamming fraction 𝜙J and has a zero value in the absence of particles [𝜂n(0) = 0]. Concretely,
Morris and Boulay (1999) proposes 𝜂n = 𝐶[𝜙/(𝜙J − 𝜙)]𝑛 with 𝐶 = 0.6 and 𝑛 = 2, while
Zarraga, Hill, and Leighton Jr (2000) uses 𝐶 = 2.17 𝜙3

J ≈ 0.5 and 𝑛 = 3.

The normal stress differences are closely connected with the fact that particles suspended
in shearing flows are not distributed randomly inside the volume, but instead, form a mi-
crostructure. We will discuss this in greater detail in Sec. 1.5. For now, we want to highlight
that the presence of elements that may alter this microstructure, like walls, can also directly
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affect 𝑁1 and 𝑁2. Gallier, Lemaire, Lobry, et al. (2016) performed simulations of suspensions
in wall-bounded channel flow and found that 𝑁1 is positive near the walls (up to a distance
of roughly one particle diameter), and negative, far from them.

1.4. Interactions

The macroscopic behavior of the suspension is defined by the way the particles interact
with the surrounding fluid and between themselves. Here, we present the most common
mechanisms.

1.4.1. Hydrodynamic forces

One particle moving relative to the surrounding fluid will experience a drag force which, for
a sphere of radius 𝑎 and with Re = 0, takes the form

𝑭d = −6𝜋𝜂f𝑎 (𝒖𝑝 − 𝒖), (1.15)

where 𝒖𝑝 is the particle velocity, and 𝒖 is the bulk velocity of the fluid which can be estimated
by calculating the average fluid velocity in a suitably large volume centered on the particle.

In general, the drag force will oppose any relative displacement, making the particles and
the fluid move mostly together in viscous fluids. In a simple shear flow of the form 𝒖 = ̇𝛾𝑦𝑥,
a force-free sphere will move with the velocity corresponding to its position, i.e. 𝒖𝑝 = ̇𝛾𝑦𝑝𝑥
for a particle with its center located at (𝑥𝑝, 𝑦𝑝, 𝑧𝑝). Furthermore, such a sphere will introduce
a perturbation of the velocity field that extends to a considerable distance due to its slow
decay as 1/𝑟2 far from the sphere, with 𝑟 being the distance from the center of the particle
(Batchelor 1967, chapter 4).

When multiple particles are present, the perturbations may reach each other and generate
long-range interactions. In the limit Re → 0, the hydrodynamic forces and torques exerted
on the particles can be calculated as the multiplication of a resistance matrix and a vector
made from the translational and rotational velocities of the particles. The resistance matrix
is a function only of the relative particle positions, their radii, and the fluid viscosity (any
non-viscous force has to be considered separately). This approach is the basis of the Stokesian
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dynamics simulations (Brady and Bossis 1988).

Of special interest is the hydrodynamic interaction between two nearly touching particles
since it is dominated by the lubrication force. For two spheres with same radius 𝑎, its normal
component is

𝑭l = −6𝜋𝜂f𝑎2𝑈𝑟
𝑟 − 2𝑎 𝒓, (1.16)

where 𝒓 is the unit vector pointing from one particle to the other, and 𝑈𝑟 is the radial
component of the relative pair velocity 𝑼 (see Fig. 1.5).

𝑎
𝒓

𝑼

Figure 1.5: Interacting pair of spheres.

The lubrication force opposes any change in the relative distance 𝑟 between the spheres and
diverges as they come closer. Similar characteristics can be found for particles of (almost)
any shape and also for the interaction between particles and walls (effectively a sphere of
infinite radius). The fact that 𝑭l diverges as 𝑟 → 2𝑎 suggests that any direct contact between
two sphere would be impossible but, in practice, this is not the case as real surfaces are rough
and have asperities (see next section).

Notice that for the lubrication force we have to consider only two particles at a time,
and not the interactions between all of them like in the resistance matrix formulation. Both
approaches may be combined to efficiently simulate concentrated suspensions.

1.4.2. Contact forces

When a suspension of spheres is subject to a shearing flow like that shown in Fig. 1.1, a
sphere far from others and at a transverse position 𝑦 will move with the velocity 𝒖 = ̇𝛾𝑦𝒙̂ of
the streamline, due to the drag force. Then, spheres in different streamlines may collide in
the sense that they approach, have strong short-range interactions and, then, separate (see
Fig. 1.6). At zero Re, the reversibility of the Stokes equation (1.9) and the symmetry of the
bulk flow, would make the trajectories fore-aft symmetric (i.e. in the flow direction 𝑥, see the
black curve in Fig. 1.6b).
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a

𝑎

𝑦 𝑼 = ̇𝛾𝑦𝒙̂
b

𝑥
2𝑎

𝑦 𝑦𝑓

Figure 1.6: Particle collision in bulk shear flow. a) Two spheres approaching. b) Possible trajectories
of the top sphere in a reference frame following the bottom one. Black curve: hydrodynamic forces
only. Red dash-dotted curve: hydrodynamic and contact forces.

Contrary to this, experiments with shear flow shows that suspended spheres have a trans-
verse self diffusivity 𝐷𝑦 proportional to 𝑎2 ̇𝛾 and increasing with 𝜙 (D. Leighton and Acrivos
1987a). This means that after a time 𝑡, a sphere will end up at a transverse distance √𝐷𝑦𝑡
from its original streamline, on average. Then, it must be able to change streamlines by
a mechanism not considered above. Possible mechanisms include interactions of more than
two spheres, and non-hydrodynamic interactions like Brownian motion (Sec. 1.4.3), colloidal
forces (Sec. 1.4.4), and solid contacts. Of those, only solid contacts was shown to be relevant
for larger particles (2𝑎 > 10 µm), and for all volume fractions, down to the case of only two
particles (Firouznia et al. 2018; Popova et al. 2007).

When two spheres approach each other, their surface separation may become exceedingly
small (∼ 10−4𝑎) and, while the lubrication force guarantees that smooth surfaces will not
touch, real spherical particles have rough surfaces with asperities of comparable size (Lemaire
et al. 2023). Accordingly, two rough spheres close enough can make contact through their
asperities and an additional normal force appears, halting their approach. The contact force
only acts when particles approach, but not when they separate, and this results in fore-aft
asymmetric trajectories, like that illustrated by the red dash-dotted curve in Fig. 1.6b (Da
Cunha and Hinch 1996). This behavior is irreversible under flow reversal: a sphere starting
with the separation 𝑦𝑓 shown in the figure, and going to the left, would not end with a
separation |𝑦| < |𝑦𝑓 |, but even farther apart.

Besides a normal component, the contact force may have a tangential component that
hinders or prevents sliding motion between particles. This frictional force is crucial to repro-
duce in simulations the experimentally measured viscosities (Gallier, Lemaire, Peters, et al.
2014). These restrictions on the particles motion may jam the suspension for particle config-
urations where it would otherwise flow, effectively reducing the jamming fraction 𝜙J (Wyart
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and Cates 2014).

1.4.3. Brownian motion

Very small particles (2𝑎 ≲ 1 µm) can be significantly displaced by the random collisions with
the molecules of the fluid. The accumulation of these displacements results in a random walk
first described by Robert Brown in 1827, and can be characterized by a diffusivity

𝐷B = 𝑘B𝑇
6𝜋𝜂f𝑎

, (1.17)

where 𝑘B is the Boltzmann constant, 𝑇 is the temperature, and 𝑎 is the particle radius. The
Péclet number Pe = 𝑈𝐿/𝐷B compares the convective and diffusive transport rates, with 𝑈
and 𝐿 being characteristic velocity and length scales. Considering again the case of particle
shear flows with 𝑈 = ̇𝛾𝑎 and 𝐿 = 𝑎, we obtain the particle Péclet number

Pep = ̇𝛾𝑎2
𝐷B

= 6𝜋𝜂f ̇𝛾𝑎3
𝑘B𝑇

. (1.18)

It is clear now why the particles must be small for the Brownian motion to have a significant
impact. In practice, this means that small particles in a static fluid will eventually reach
an equilibrium distribution, while large particles will remain in their positions for very long
times in the absence of external forces (e.g. gravity). In our study, we do not need to
consider Brownian forces since the spheres used have diameters 2𝑎 ≥ 40 µm, and can be
safely considered as non-Brownian.

1.4.4. Colloidal forces

Another interaction relevant for small particles is the colloidal forces between pairs of them.
One considers as colloidal any short-range (nanometric scale) force between the surfaces of two
adjacent particles. The most common cases are Van-der-Waals forces, which are attractive,
and electrostatic forces between equally-charged particles, which are repulsive. Colloidal
forces affect significantly the motion of the particles when the ratio between their surface and
volume is large enough, in practice, this applies for particles with 2𝑎 ≲ 10 µm, otherwise,
they are called noncolloidal. As in the case of Brownian forces, the relatively large size of
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our particles (2𝑎 ≥ 40 µm) means that colloidal forces will not play an important role in our
experiments.

1.4.5. Gravity and sedimentation

One particle submerged and under the effect of gravity will be subject to a buoyancy force

𝑭b = (𝜌p − 𝜌f)𝑉p 𝒈, (1.19)

where 𝜌p is the particle density, 𝜌f is the fluid density, 𝑉p is the particle volume, and 𝒈 is the
gravity acceleration. Spherical particles of radius 𝑎 and denser than the fluid will settle with
a velocity

𝑈S = 2
9(𝜌p − 𝜌f)𝑎2𝑔/𝜂f (1.20)

in the Stokes regime (Re = 0), as a result of the balance of 𝑭b and the drag force 𝑭d.

With multiples particles in suspension, the settling, also called sedimentation, is hindered
by the interactions between each other, and 𝑈S must be corrected by a factor which has been
estimated as (Richardson and Zaki 1954)

𝑓hs(𝜙) = (1 − 𝜙)𝛼, (1.21)

with exponents 𝛼 between 2 and 5.1 found in the literature (Chapman and Leighton Jr 1991;
Miller and Morris 2006). As for the suspension viscosity, an exact calculation of 𝑓hs would
require a knowledge of the particle distribution (Davis and Acrivos 1985).

In order to study the effects of the flow on our suspensions separately from any buoyancy
effects, we matched both densities (𝜌f = 𝜌p), rendering the particles neutrally buoyant.

1.5. Microstructure: particle self-organization at the microscale

In the previous section, we have seen different ways in which the particles can interact between
themselves and with the fluid, especially in straining flows which make the particles approach
one another. In principle, the knowledge of the particle configuration (e.g. position of the
centers) and the boundary conditions for the fluid might allow us to calculate macroscopic
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properties of a suspension (e.g. viscosity). Given that the particles can have significant
long-range interactions, it is necessary to consider how each particle influences the motion of
every other one, an exceedingly difficult task to perform analytically, and a computationally
demanding one for simulations.

Batchelor and Green (1972) approached this problem by considering that in low-concentration
(𝜙 ≲ 0.1) non-Brownian sphere suspensions, only pairwise hydrodynamic interactions between
the spheres need to be taken into account to calculate the suspension viscosity 𝜂s(𝜙) up to an
order 𝜙2. In the other extreme, for very high concentrations (𝜙 ≳ 0.45), Mari et al. (2014)
have shown that simulations using only pairwise forces between the particles can qualita-
tively reproduce several characteristics of suspensions near jamming. This is so because in
this case most of the suspension stress results from short-range lubrication or contact forces
between nearby particles. For intermediate concentrations, the long-range multi-body hydro-
dynamic interactions must be incorporated using simulation methods like Stokesian Dynamics
(Brady and Bossis 1988), force coupling (Yeo and Maxey 2010), or fictitious domain (Gallier,
Lemaire, Peters, et al. 2014) and, even in these more complete simulations, limitations in
the spatial resolution usually require that short-range hydrodynamic interactions forces are
complemented with additional forces between pairs of neighboring particles.

For the above reasons, it is very important to know about the spatial distribution of
neighboring particles in suspensions, usually through the statistical properties of their rel-
ative positions. Consider a volume 𝑉 containing 𝑁 (≫ 1) particle centers in a suspension
undergoing a simple shear flow like that shown in Fig. 1.1, induced, for example, by moving
walls far from the volume under analysis. During the shearing, particles will keep moving
and colliding each other but, eventually, the statistical properties of the suspension will stop
changing meaningfully and it can be said to be in a steady state.

One such property is the probability density 𝑃(𝒙0+𝒓|𝒙0) of finding a particle at a position
𝒙0 +𝒓 when a reference particle is at position 𝒙0. Far from the reference particle (|𝒓| → ∞),
the particle positions are uncorrelated and 𝑃(𝒙0 + 𝒓|𝒙0) is simply 𝑃(𝒙0 + 𝒓) = 𝑛, where
𝑛 = 𝑁/𝑉 is the particle number density. Here we assume that there are no inhomogeneities
in the particle concentration. On the other hand, near the reference particle, the distribution
of neighboring particles is usually not uniform and it gives us information about the way in
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which particles interact.

In particular, we will take
𝑃(𝒙0 + 𝒓|𝒙0) = 𝑛 𝑔(𝒓), (1.22)

where 𝑔 is the pair-distribution function which in general may depend on time 𝑡, position 𝒙0,
radii of the particles, and other properties of them. Here, we will concentrate on the simpler
case where the suspension properties are constant and homogeneous, and all the particles are
identical spheres of the same radius 𝑎.

1.5.1. Steady pair-distribution function

Several measurements of 𝑔(𝒓) in experiments and simulations may be found in the literature
about suspensions, of which Parsi and Gadala-Maria (1987) seems to be the earliest. Here,
we want to highlight the work of Blanc, Lemaire, et al. (2013) due to the clarity of their
results and the wide range of particle volume fractions studied. They performed experiments
in which a suspension of monodisperse spheres (2𝑎 = 86 µm) is continuously sheared inside
a wide-gap Couette device, with very small Reynolds numbers and very large Péclet ones.
Using fluorescence, they were able to observe the particles in a plane inside the device, as
shown in Fig. 1.7a. This plane corresponded to the velocity (𝑥) and gradient (𝑦) directions.
Inside the region of interest (white box in Fig. 1.7a), the volume fraction 𝜙 and the shear
rate ̇𝛾 are approximately uniform. These authors tracked the particles and accumulated
enough statistics to obtain the twodimensional pair-distribution functions (pdf) displayed
in Figs. 1.7b-f, each corresponding to a different volume fraction. In all cases, the results
correspond to the steady state reached after enough shearing.

All the pdf’s present their largest probability for pairs of particles nearly in contact (red
rings at 𝑟 ≈ 2𝑎 in the images). Looking at the smallest volume fraction (𝜙 = 0.05 in
Fig. 1.7b), we observe that 𝑔(𝑟𝑥, 𝑟𝑦) is roughly symmetric with respect to a reflection along
the horizontal direction, and has depletions of pairs near 𝑟𝑦 = 0. This is called fore-aft
symmetry since inverting the flow direction (horizontal) would result in a similar pdf. That
said, it is clear that this pdf is not completely symmetric and, as the volume fraction increases,
the pdf’s become more asymmetric with respect to a flow inversion. Figure 1.7d (𝜙 = 0.35)
is a clear example: now the depleted regions are off axis at what are called the extensional
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a b c

d e f

Figure 1.7: Figures taken from Blanc, Lemaire, et al. (2013). a) Example image from their experi-
ments. The dark disks correspond to spherical particles with diameters 2𝑎 ≈ 86 µm. The inner radius
rotates to the right to induce an approximately uniform shear inside the white box, where the data
is collected. b-f) Pair-distribution function 𝑔(𝑟𝑥, 𝑟𝑦, 𝑟𝑧) for 𝑟𝑧 ≈ 0, as a function of 𝑟𝑥/𝑎 (horizontal
axis) and 𝑟𝑦/𝑎 (vertical one). The colors indicate the values of 𝑔. Each plot corresponds to a different
particle volume fraction 𝜙.

quadrants (𝑟𝑥𝑟𝑦 > 0).

This is an important characteristic of the pdf’s of suspensions. The reversibility of the
Stokes equation (Eq. 1.9) with respect to an inversion of the flow direction results in trajec-
tories for the collision of two particles which are symmetric in the flow direction, when only
hydrodynamic forces are considered (see black curve in Fig. 1.6b). In turn, this results in a
symmetric pdf similar to that shown in Fig. 1.7b. As the particle concentration increases, the
short-range interactions which are not reversible become important, most prominently the
direct contacts between the particle surfaces. The normal contact force keeps the particles
in a pair separated during their approach in the compressional quadrant (𝑟𝑥𝑟𝑦 < 0), but
does not have an impact during their separation in the extensional quadrant (𝑟𝑥𝑟𝑦 > 0); this
results in irreversible trajectories (red curve in Fig. 1.6b) and the asymmetry observed in
Fig. 1.7d. Moreover, it leads to a particle self-diffusivity that will be discussed in Sec. 1.6.1
and to the normal stress differences shown in Sec. 1.3.1 (Brady and Vicic 1995; Seto and
Giusteri 2018).
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For even larger volume fractions (𝜙 = 0.45 and 0.55 in Figs. 1.7e,f), secondary depletion
zones appears in the compressional quadrants, and the pdf becomes roughly symmetric with
respect to inversions in either 𝑥 or 𝑦 directions. This increased ordering as the volume
fraction approaches its jamming value (𝜙 ≈ 0.6), may reduce effects associated with the fore-
aft asymmetry of 𝑔, like self-diffusivities (Zhang, Kopelevich, and Butler 2024) and normal
stress differences (Seto and Giusteri 2018).

1.5.2. Reorganization after flow reversal

The fact that neighboring particle positions are correlated in space is interpreted as a shear-
induced microstructure of suspensions. In general, this structure is not symmetric and de-
pends on the type of flow. The pdf’s observed in Figs. 1.7b-f correspond to a shearing flow
where the particles move from left to right in the top (𝑟𝑦 > 0) and, opposite, below (𝑟𝑦 < 0).
If the flow direction were to reverse, the particles would have to rearrange such that the pdf’s
become reflected along the flow direction (𝑥). During this transient situation, most particles
lose contacts and the suspension viscosity is sharply reduced, as first shown by Gadala‐Maria
and Acrivos (1980).

Figure 1.8a shows measurements of the relative suspension viscosity 𝜂s/𝜂f as functions of
the strain ̇𝛾𝑡 accumulated after a shear reversal (Blanc, Peters, and Lemaire 2011). Immedi-
ately after reversal (𝑡 = 0), there is a sharp decrease of the viscosity in all cases, which then
continues to decrease a little more before starting to recover until it reaches its pre-reversal
(steady) value after a strain ̇𝛾𝑡 of the order of one.

In order to understand better this process, Peters et al. (2016) performed simulations
where they distinguish between the contributions of hydrodynamic and contact forces to the
viscosity. Figure 1.8b displays the suspension viscosity 𝜂𝑆, the hydrodynamic contribution 𝜂𝐻

and the contact one 𝜂𝐶 as functions of the accumulated strain ̇𝛾𝑡 before and after a reversal
at 𝑡 = 0, for a suspension of spheres with volume fraction 𝜙 = 0.45. Note that 𝜂𝑆 = 𝜂𝐻 +𝜂𝐶.
Looking at the components (middle and bottom plots), we observe that the sharp decrease in
𝜂𝑆 is a consequence of the drop to zero of the contact contribution, while the hydrodynamic
one increases moderately. After these sudden changes, both components slowly relax to their
previous values. Since 𝜂𝐶 takes on values about twice those of 𝜂𝐻 in the steady state (for
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Figure 1.8: a) Relative suspension viscosity 𝜂s/𝜂f versus accumulated strain ̇𝛾𝑡 after a shear reversal
(𝑡 = 0). Measurements by Blanc, Peters, and Lemaire (2011) using various volume fractions 𝜙.
b) Suspension viscosity (𝜂𝑆), and its hydrodynamic (𝜂𝐻) and contact (𝜂𝐶) components for a simulated
suspension with 𝜙 = 0.45 in a similar situation. From Peters et al. (2016).

this particular volume fraction), the loss of contacts induces a strong reduction of the total
suspension viscosity.

A study of the previous variations for different volume fractions shows that the viscos-
ity drop [max(𝜂𝑆) − min(𝜂𝑆)] increases monotonically with the volume fraction 𝜙, and the
characteristic strain required for relaxation, decreases monotonically with 𝜙. The first obser-
vation can be explained by the contribution of contacts to the suspensions stress increasing
as the particles are forced into a closer proximity of each other. The second observation is
a consequence of the increased rate of particle collisions, which accelerates the irreversible
evolution of the suspension.

The above results show that, in order to fully explain time-dependent flows of suspen-
sions, we need to know not only the particle volume fraction at each position, but also the
instantaneous state of the particle microstructure. Various models were proposed along the
years for capturing its salient characteristics with a reduced number of degrees of freedom,
usually taking the form of a second-order fabric tensor ⟨𝑝𝑖𝑝𝑗⟩ where 𝒑 = 𝒓/|𝒓| and the average
is calculated over all the particle pairs with the help of an estimation of 𝑔 (Phan-Thien 1995;
Chacko et al. 2018; J. Gillissen and H. Wilson 2018).
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1.6. Shear-induced self-diffusion and migration of particles

In section 1.4.2, we explained that two particles approaching each other in a simple shear
flow could experience solid contacts through asperities on their surfaces, with the end result
that particles accumulate displacements transverse the flow direction after each of those close
encounters. These displacements induce a random walk of the particles, happening simulta-
neously with the shearing motion, which can be characterized by a self-diffusivity increasing
with the shear rate and the volume fraction (Drazer et al. 2002). Then, in inhomogeneous
situations where the shear rate or the volume fraction vary with the position, this otherwise
random motion can give rise to net flows of particles moving from regions where the diffusiv-
ity is larger to ones where it is smaller. This phenomenon is called shear-induced migration
of the particles (D. Leighton and Acrivos 1987b), and it is an irreversible process happening
in suspensions with Re = 0 and Pe → ∞, since reversing the flow direction would not bring
the suspension back to its previous state, but further increase the lateral deviations of the
particles.

The phenomena discussed in this section are essential to our work since we study pressure-
driven flows of suspensions through channels, one of the most common situations where
the particle migration can be observed. Moreover, knowledge of the particle self-diffusivity
can be useful to estimate the characteristic lengths and times of other irreversible processes
in suspensions. Later, in Sec. 1.7, we will consider how the oscillatory flows used in our
experiments may be affecting the diffusion and migration processes explained here.

1.6.1. Particle self-diffusion

Simulations and experiments tracking individual particles can provide transverse positions
𝑦(𝑡) and 𝑧(𝑡) of the particles. Here 𝑥 is the flow direction, 𝑦 is the velocity gradient direction,
and 𝑧 is the vorticity direction (refer to Figs. 1.1 and 1.6). Then, it is possible to calculate
the accumulated displacements Δ𝑦(𝑡) = 𝑦(𝑡) − 𝑦(0) and Δ𝑧(𝑡) = 𝑧(𝑡) − 𝑧(0) resulting from
the multiple collisions that each particle experienced up to time 𝑡. For simple shear flows
(i.e. uniform and constant ̇𝛾 and 𝜙), and assuming that the experiments start from a steady
state at time 𝑡 = 0, the average over multiple particles and experiments results in curves



A. A. García − Doctoral thesis − December 15, 2025 Page 22 of 156

of ⟨(Δ𝑦)2⟩/𝑎2 and of ⟨(Δ𝑧)2⟩/𝑎2 versus ̇𝛾𝑡 like those shown in Fig. 1.9a. After an initial
transient behavior (up to ̇𝛾𝑡 ≈ 5 here), the curves become linear and diffusion coefficients
𝐷𝑦𝑦 and 𝐷𝑧𝑧 can be obtained using the following relations:

⟨(Δ𝑦)2⟩ ∼ 2𝐷𝑦𝑦𝑡, ⟨(Δ𝑧)2⟩ ∼ 2𝐷𝑧𝑧𝑡. (1.23)

Considering a zero particle Reynolds number, and excluding the influence of the walls or
external forces (e.g. gravity), the only characteristic scales are given by the particle radius
𝑎 (assuming monodisperse particles) and by the inverse of the shear rate 1/ ̇𝛾. Then, the
dimensionless diffusivities 𝐷∗

𝑦𝑦 = 𝐷𝑦𝑦/(𝑎2 ̇𝛾) and 𝐷∗
𝑧𝑧 = 𝐷𝑧𝑧/(𝑎2 ̇𝛾) can be used to compare

the results from different works.
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Figure 1.9: a) Representative mean-square displacement curves ⟨𝑦𝑦⟩ = ⟨(Δ𝑦)2⟩ and ⟨𝑧𝑧⟩ = ⟨(Δ𝑧)2⟩
as functions of strain ̇𝛾𝑡 for suspensions with volume fraction 0.2 in simulations from Sierou and Brady
(2004). b) Self-diffusion coefficient in the gradient direction 𝐷∗

𝑦𝑦 = 𝐷𝑦𝑦/( ̇𝛾𝑎2) as a function of the
volume fraction 𝜙. Taken from various experiments (D. Leighton and Acrivos 1987a; Breedveld et al.
2001; Metzger, Rahli, and Yin 2013; Zhang, Pham, et al. 2023) and simulations (Sierou and Brady
2004; Zhang, Kopelevich, and Butler 2024).

Figure 1.9b displays values of 𝐷∗
𝑦𝑦 as a function of 𝜙 obtained by multiple authors. Values

for 𝐷∗
𝑧𝑧 are less frequently found in the literature as they are more difficult to measure in

experiments, but generally, they show similar trends but smaller values. In all cases, the
diffusivity 𝐷∗

𝑦𝑦 increases greatly with volume fractions from 𝜙 = 0.1 to ≈ 0.4. For larger
values of 𝜙, the diffusivity may continue to increase, may remain flat or it may even decrease.

It seems that at higher concentrations, factors related to the details of the contact forces
and the ordering of the particles become important. For example, Metzger, Rahli, and Yin
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(2013) observed that the particles got organized into layers parallel to the flow direction in
their experiments using large volume fractions (𝜙 > 0.4). Similarly, Zhang, Pham, et al.
(2023) found that particles with larger surface roughness got organized into layers, and their
measured diffusivities were approximately a 20% smaller than those of smoother particles,
contrary to expectations of the opposite. They hypothesize that particles moving inside
layers may be able to avoid collisions, or they may bounce back to their original layer after
one, reducing the opportunities to accumulate large displacements. Continuing this work,
Zhang, Kopelevich, and Butler (2024) performed simulations with and without friction during
contacts (i.e. the tangential component of the contact force), and found that the addition
of friction significantly increased the diffusivity, improving the agreement with experimental
data (see the yellow crosses in Fig. 1.9b) compared to previous simulations from Sierou and
Brady (2004) (green diamonds) which do not account for friction. Consistently, they show
that in simulations with frictional contacts, the particles are less prone to form layers.

In summary, measurements of the particle self-diffusivity provide a macroscopic char-
acterization of the effect of particle-particle contacts, which is otherwise very difficult to
observe directly, and the trends shown here (increase with 𝜙, influence of surface character-
istics and ordering of the particles), will remain relevant to analyze more complex situations
with gradients in the strain rate and the volume fraction directly influencing the motion of
the particles.

1.6.2. Shear-induced migration

Gadala‐Maria and Acrivos (1980) observed a long-term decrease of the viscosity of a suspen-
sion in a Couette device. It turned out that the particles were escaping from the gap where
the shear is imposed to a connected reservoir which was stationary, decreasing the particle
volume fraction in the gap. D. Leighton and Acrivos (1987b) explained this phenomenon as
the migration of particles from regions of high to low shear stress 𝜂 ̇𝛾 (gap to reservoir), as a
result of their shear-induced diffusive motion.

Pressure-driven flows inside tubes or channels are important situations where particle
migration is also observed. Figure 1.10 illustrates the flow induced in a fluid filling the space
between two parallel planes by a uniform pressure gradient parallel to the planes (𝑥 direction).



A. A. García − Doctoral thesis − December 15, 2025 Page 24 of 156

The planes correspond to fixed walls and the no-slip boundary condition imposes 𝒖(±𝑏) = 0.
For a Newtonian fluid with viscosity 𝜂 and Re = 0, Eq. (1.9) predicts a shear stress linear
in 𝑦:

𝜂𝜕𝑢𝑥
𝜕𝑦 = −𝐺𝑦, (1.24)

where 𝐺 is the magnitude of the pressure gradient. Assuming a uniform viscosity 𝜂, the
integration of the previous equation results in a parabolic velocity profile

𝒖(𝑦) = 𝑢max [1 − (𝑦𝑏)
2
] 𝒙̂, 𝑢max =

𝐺𝑏2
2𝜂 . (1.25)

Such profiles can be observed in channels where the previous situation is approximated by a
rectangular cross section with a large aspect ratio, assuming the observations are performed
far enough from the lateral walls.

𝑦 = +𝑏

𝑦 = −𝑏

𝑥

𝑦

𝑢𝑥(𝑦)𝜕𝑥𝑝 = −𝐺

Figure 1.10: Flow between two parallel planes at 𝑦 = ±𝑏 induced by a pressure gradient −𝐺 in the
𝑥 direction.

If instead of a Newtonian fluid, we have a suspension between the planes, the inhomogene-
ity of the shear stress will make the particles migrate towards the center where ̇𝛾 = 0. Rashedi
et al. (2020) performed steady channel flow experiments in a 4m-long rectangular channel
with a width of 40mm and a gap 2𝑏 = 2mm. Particles with diameter 2𝑎 ≈ 80 µm were sus-
pended in a very viscous fluid, resulting in a Reynolds number close to zero (Re < 10−5). The
suspension entered the channel with an almost uniform particle concentration, and reached
the outlet with a significantly larger concentration in the center of the gap. Figure 1.11 shows
images and volume fraction profiles taken near the inlet and the outlet for a suspension with
average volume fraction 𝜙bulk = 0.4.

Another consequence of the particle migration is a nonuniform viscosity. Remember that
the suspension viscosity increases with the volume fraction and diverges near the jamming
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Figure 1.11: a) Images showing a slice of a suspension of spheres (𝜙bulk = 0.4) in a straight channel.
The slice shows the flow and gap directions, and is located far from the lateral walls. Left: near the
inlet. Right: near the outlet. b) Particle volume fraction profiles across one half of the gap (center at
𝑦 = 0, wall at 𝑦 = 𝑏). From Rashedi et al. (2020), figures 2 and 6.

fraction (see Sec. 1.3). After migration, the local volume fraction 𝜙 increases monotonically
from the walls (𝑦 = ±𝑏) to the gap center (𝑦 = 0), reaching values near its jamming fraction
(≈ 0.6) close to the later, as seen in the red curve in Fig. 1.11b. Consequently, the suspension
viscosity 𝜂s will also increase from the walls to the center, and replacing 𝜂 with 𝜂s(𝜙) in
Eq. (1.24) will result in non-parabolic velocity profiles.

Figure 1.12 displays profiles across the gap of the particle volume fraction 𝜙(𝑦) and the
particle longitudinal velocity 𝑢p

𝑥(𝑦) for mean volume fractions 𝜙bulk between 0.1 and 0.5.2 On
the left, we observe that all the concentration profiles show the effects of particle migration,
although the maximum volume fraction reached in the center increases with 𝜙bulk. On the
right, the velocity profiles become progressively more blunted in the center with increasing
𝜙bulk, that is, with smaller maximum velocities in the center (𝑦 = 0) and larger ones near the
walls (𝑦 = ±𝑏). This is a consequence of the nonuniform viscosity which is larger in the center
and smaller near the walls. For the larger concentrations (𝜙bulk ≥ 0.30), the volume fraction
near the center approaches the maximum packing (≈ 0.6), resulting in very large viscosities
there and a region where the suspension moves almost like a solid block, with nearly constant
velocity and zero shear rate.

Rashedi et al. (2020) also measured volume fraction profiles at intermediate positions
between the inlet (𝑥 = 0) and the outlet (𝑥 = 4000 𝑏). Looking at the volume fraction 𝜙center

in the center (𝑦 = 0) of those profiles, it is possible to track the progress of the particle

2The particle velocity 𝒖p is measured from the average motion of the particles and, in principle, it could
differ from the fluid-averaged velocity. Nonetheless, this is a very viscous fluid and Re ≈ 0, then, we can assume
that the drag force makes the velocity slip between the particles and the fluid minimal and both velocities are
identical for our current purposes.
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Figure 1.12: Profiles near the channel outlet and across the gap for different average volume fractions
𝜙bulk. a) Particle volume fraction. b) Particle velocity divided by its average. Taken from Rashedi
et al. (2020), figures 6 and 9.

migration along the channel length, as displayed in Fig. 1.13. In the figure, we observe that
𝜙center increases with 𝑥 up to 𝑥 ≈ 2000 𝑏, except for 𝜙bulk = 0.10, for which it is unclear
whether an equilibrium value of 𝜙center is reached inside this channel.

In the above study, the suspension was required to travel large distances in order for
the particle migration to become apparent, but it is also possible to observe migration in
oscillatory flows where the suspension accumulates large displacements (and strains) without
any net one (Snook, Butler, and Guazzelli 2016). This is so because the migration is an
irreversible process and the particles move toward the channel’s center irrespective of the
direction in which the suspension is flowing. In Sec. 1.7.2, we will discuss in more detail the
influence of the oscillations on the particle migration.

The migration process in channels (and tubes) has been modelled using shear-induced
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Figure 1.13: Particle volume fraction in the centerline of the channel as a function of the position
along its length for different mean volume fractions. Taken from Rashedi (2019), figure 2.12.
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diffusivities by Phillips et al. (1992). They consider two balancing particle fluxes: one due to
the gradient of the collision frequency, which is taken proportional to 𝑎∇( ̇𝛾𝜙); and another
due to the gradient of the viscosity, proportional to (𝑎/𝜂)∇𝜂. This model, usually called
diffusive flux model, successfully predicts the accumulation of particles in the center, and the
blunted velocity profiles, but the profiles obtained do not match the profiles from experiments.

An alternative interpretation is provided by the suspension balance model of Nott and
Brady (1994). Here the particle fluxes that induce the migration are a consequence of an
imbalance of the normal stresses produced (and felt) by the particles. Concretely, the particle
flux at Re = 0 is calculated as

𝐽p
𝑖 = 2𝑎2

9𝜂f
𝑓hs(𝜙) 𝜕𝑗𝜎p

𝑖𝑗. (1.26)

Here, 𝑓hs is the hindered settling function from Eq. (1.21) and 𝝈p is the particle contribution
to the stress tensor, that is, the total suspension stress minus the stress induced by the fluid
alone. One advantage of this model is that normal stress differences (see Sec. 1.3.1) can
be incorporated using Eq. 1.13, resulting in a model that can explain better the particle
migration in certain curvilinear shear flows, like inside a cone-and-plate rheometer (Morris
and Boulay 1999). In the end, both the particle diffusivity and their contributions to the
normal stresses are a consequence of the particle contacts, so, both models capture the same
intrinsic phenomenon.

1.7. Irreversibility in oscillatory shear flows

Given that we use flow oscillations in our experiments, it is important to know more about
their possible effects on the irreversible processes described in the previous section for steady
flows. In Sec. 1.5.2, we have seen that, after a reversal of the flow direction, the particles
transiently lose contacts and the viscosity decreases until a microstructure corresponding
to the new flow direction is formed. Given that solid contacts between particle have been
associated with irreversible behavior in suspensions, like particle self-diffusion and migration,
we may expect some degree of reversibility in the trajectories of the particles after reversal
and before new contacts are established.



A. A. García − Doctoral thesis − December 15, 2025 Page 28 of 156

1.7.1. Uniform oscillatory shear flows

In order to validate the previous hypothesis, Pine et al. (2005) performed experiments using
oscillatory shearing of suspensions between two concentric cylinders (Couette device) with
Re ≈ 0 and Pe−1 ≈ 0. During each oscillation cycle, the inner cylinder is made to rotate in one
direction, uniformly straining the suspension by an amount 𝛾0 and, then, the opposite rotation
is performed, counteracting the previous strain.3 Then, they studied the trajectories of the
particles for different values of the strain amplitude 𝛾0, observing that for amplitudes below a
critical value of 𝛾𝑐, the particles returned to their initial positions after each oscillation while,
for amplitudes above the critical value, the particles accumulated random displacements after
each cycle.

This random motion can be characterized by a diffusivity which depends on the strain
amplitude 𝛾0, as shown in Fig. 1.14a. There, we see that the diffusivity increases linearly
with 𝛾0 above a threshold value (𝛾𝑐) that depends on the volume fraction 𝜙 and, below that
value, the diffusivity is negligible, presenting a clear transition from reversible to irreversible
behavior as the strain amplitude increases. Figure 1.14b shows that 𝛾𝑐 is a decreasing function
of the volume fraction 𝜙, of the order of 2 for 𝜙 = 0.30 and 0.40. This is consistent with the
results of Peters et al. (2016) where the strain required for the viscosity to recover its steady
value has a similar dependence on 𝜙 (see their figure 12). Then, a plausible explanation is that
for strain amplitudes 𝛾0 < 𝛾𝑐, the particles do not come into contact frequently during the
oscillations, and their interactions are (almost) purely hydrodynamical, resulting in reversible
trajectories during close approaches, as represented by the black trajectory in Fig. 1.6b.

A stronger connection between the critical strain amplitude 𝛾𝑐 and the particle contacts
is established in the work of Pham, Butler, and Metzger (2016), where they measured 𝛾𝑐
for two sets of spherical particles differing only in their surface roughness. First, they took
“smooth” spheres of PMMA (acrylic) with a radius 𝑎 = 1mm, and measured the average size
of the asperities on their surfaces using images from a scanning electron microscope (SEM).
It was found to be 𝜖 ≈ 0.002 𝑎. Then, they increased the roughness of a second batch of
these particles by making them rotate on sandpaper, resulting in an average asperity size
𝜖 ≈ 0.005 𝑎. Finally, experiments performed with both sets of particles showed that 𝛾𝑐 was

3In their article, 𝛾0 is the strain over one quarter cycle, here, it is defined as twice that value.
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Figure 1.14: a) Dimensionless particle self-diffusivity in the flow direction, 𝐷∗
𝑥𝑥 = 𝐷𝑥𝑥/( ̇𝛾𝑎2), as a

function of the oscillation strain amplitude 𝛾0, for three different volume fractions 𝜙. b) Threshold
(also called critical) strain amplitude 𝛾𝑐 as a function of the volume fraction 𝜙. The dashed line is a
power law 𝐶𝜙−𝛼 fitted to the data points: 𝐶 = 0.28, 𝛼 = −1.93. Taken from Pine et al. (2005).

smaller for the rougher particles (volume fractions 0.25 < 𝜙 < 0.50). Using geometrical
arguments, the authors explain this result by showing that the number of configurations in
which the particles can avoid contacts during a strain of 𝛾0 decreases with 𝜖, reaching zero
for a critical strain

𝛾𝑐 =
𝐶

(𝜖/𝑎)1/2 (
𝜙m
𝜙 − 1) , (1.27)

which was found to fit well their experimental results with 𝐶 = 0.22 and 𝜙m = 0.58.

1.7.2. Pressure-driven oscillatory shear flows

In Sec. 1.6.2, we described the shear-induced migration of particles away from the walls
in steady pressure-driven flows through pipes and channels, and mentioned that it is an
irreversible process occurring due the nonuniform shear rate. Following the previous section,
one might wonder if a suspension oscillating in those geometries could also have a critical
oscillation amplitude below which it would behave reversibly without any particle migration.
In this case, the analysis is complicated by the fact that the strain induced during one
oscillation cycle varies with the position. Consider a velocity profile 𝑢(𝑦) like those seen in
Fig. 1.12b for channel flow: it is clear that the shear rate ̇𝛾(𝑦) = |𝜕𝑢/𝜕𝑦| is maximum near the
walls (𝑦 = ±𝑏 in this case), and zero at the centerline (𝑦 = 0). Consequently, for oscillations
with period 𝑇 , the strain induced during one half period is 𝛾osc(𝑦) = ̇𝛾(𝑦) 𝑇/2 and has the
same dependence on position as the shear rate. Then, one might wonder if it possible for
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a suspension to behave reversibly near the center and irreversibly near the wall for a given
oscillation amplitude.

In other to answer these questions, Guasto, Ross, and Gollub (2010) performed exper-
iments with a suspension of spheres (2𝑎 = 220 µm, 𝜙bulk = 0.4) oscillating in a channel
with a gap 2𝑏 = 5mm. Figure 1.15a displays the steady-state volume fraction profiles 𝜙(𝑦)
reached after enough oscillations for different maximum strain amplitudes 𝛾max = 𝛾osc(𝑏).4

For the smallest amplitude used (𝛾max = 1.97), no significant migration was observed while, as
𝛾max increases, the profiles become progressively more concentrated in the center, resembling
those seen for steady flows in Fig. 1.12a. After the corresponding steady-state is reached, they
measured the particle self-diffusivity in the direction of the flow, 𝐷𝑥𝑥.5 In Fig. 1.15b, we see
that 𝐷𝑥𝑥 strongly increases all across the gap with the strain amplitude, although it reaches
larger values near the walls that in the center. The above results show that for certain small
strain amplitudes (𝛾max ≲ 3 in this case), the suspension behaves reversibly (no migration,
very low diffusivity) and, as the strain amplitude increases, the suspension behavior becomes
progressively more irreversible everywhere.
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Figure 1.15: a) Steady-state particle volume fraction profiles across the gap of a channel for different
oscillation strain amplitudes 𝛾max (legend on the right). b) Particle self-diffusivity in the flow direction
𝐷𝑥𝑥 normalized by 𝑎2/𝑇 , with 13 s < 𝑇 < 36 s, the oscillation period (increases with 𝛾max). From
Guasto, Ross, and Gollub (2010).

A broader range of strain amplitudes was investigated by Butler, Majors, and Bonnecaze
(1999) for experiments in which a suspension (𝜙bulk = 0.4, radius 𝑎 ≈ 65 µm) oscillates inside
pipes with radii 𝑅 = 10mm and 4.4mm. They measured the resulting particle distributions

4Guasto, Ross, and Gollub (2010) measured profiles 𝛾(𝑦) and used their maximum values (found near the
wall) as a reference strain amplitude. In other works, and our own, the strain amplitude is characterized by
𝛾̄0 = 𝐴/𝑏, where 𝐴 is the average distance travelled by the suspension during half of an oscillation and 𝑏 is
the channel half thickness or the radius of a pipe. For channel flow, both strain values can be related if we
approximate the velocity profile as a parabola: 𝛾max ≈ 3𝛾̄0.

5Like in Pine et al. (2005), 𝐷𝑥𝑥 is measured by observing the positions of the particles after each oscillation.
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𝜙(𝑟) for different oscillation amplitudes 𝐴, where 𝑟 is the distance from the pipe center
line, and 𝐴 is the average distance travelled by the suspension during the first half of each
oscillation. In the largest pipe, they found that the particles migrated toward the center
for large amplitudes (𝐴 ≥ 2𝑅) while, for small amplitudes (𝐴 = 0.03𝑅), they found an
anomalous migration toward the walls. In the smaller pipe, the migration was always toward
the center, but for the smaller amplitudes, the gradient in 𝜙(𝑟) was much smaller, meaning
a weaker migration.

A similar phenomenon was observed in the two-dimensional simulations by Morris (2001).
Here, a suspension of disks occupying 40% of the available area was made to oscillate between
two parallel walls separated by a distance 2𝑏. The final distribution of the disks (after enough
oscillations) depends on the oscillation amplitude 𝐴, with a critical value 𝐴c = 1.5 𝑏: above
this value, the disks migrated toward the centerline, below, toward the walls, and when
𝐴 = 𝐴𝑐, they remained homogeneously distributed. It is noted that during the anomalous
migration (toward the walls), disks that were initially nearby tend remain so during the whole
process, suggesting that the process is nondiffusive since the particles do not wander around
randomly. See Fig. 1.16 for some examples of the disk distributions observed.

a b c

Figure 1.16: Snapshots taken from simulations of a suspension of disk of radius 𝑎 confined between
two walls separated by a distance 2𝑏 = 18.3 𝑎. The walls are made of fixed particles (black disks at
the top and bottom). Periodic boundary conditions apply in the horizontal direction. From Morris
(2001). a) Initial state. b) State after 500 oscillations with amplitude 𝐴 = 0.2 𝑏. The disks migrated
toward the walls. Notice that the disks numbered 35, 36, and 40 remain nearby as in the initial state.
c) Typical distribution reached with a steady flow (𝐴 → ∞) where the disk migrated toward the
centerline.

A possible explanation is provided by Ingber and Vorobieff (2013) considering trajectories
of just two rough spheres in simulated oscillatory Poiseuille flow. They predict that when
the two spheres get closer, the position of their center of mass (CM) moves toward the region
with low shear rate (e.g. center of a pipe); while during their separation, the CM moves
back toward the high shear rate region (e.g. walls). The sphere roughness (𝜖 > 0) introduces
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an asymmetry in this process which results in a net transverse displacement of the center
of mass. Interestingly, for small enough oscillation amplitudes (𝐴 ≲ 13 𝑏 in their case), the
spheres have a net migration toward the region of high shear rate, in qualitative agreement
with experiments of Butler, Majors, and Bonnecaze (1999).

The above results suggest that suspensions might develop a microstructure different from
that shown in Fig. 1.7 when they are subjected to oscillations, especially during the proposed
loss of contacts after each flow reversal. This alternative microstructure would have more
pairs in expansion (separating) than in compression (approaching), resulting in a tensile
contribution of the particles to the normal stress (𝜎p

𝑦𝑦 < 0) that could explain the anomalous
migration using the suspension balance model (see Eq. 1.26). Such a tensile normal stress
during oscillations was observed in the simulations of Bricker and Butler (2007), although
with an absolute value much smaller than those of the steady normal stresses.

We will continue the present discussion about the effects of oscillations in suspensions in
Chapter 6, after we have presented our results concerning an instability in oscillatory channel
flow, first observed in the experiments summarized in the following section.

1.8. Instability in the oscillatory channel flow of suspensions

In our laboratory, Roht (2017) and Roht et al. (2018) reported experiments with sphere
suspensions oscillating inside narrow channels (Hele-Shaw cells). Measuring the light trans-
mitted across the channel thickness, they measured the relative particle concentration along
the flow (𝑥) and width (𝑦) directions, as shown in Fig. 1.17a, and found that the particles
can get organized into patterns of periodic stripes perpendicular to the flow direction (see
the image in Fig. 1.17a). They observed this phenomenon for a broad range of experimental
parameters: bulk particle volume fractions 𝜙bulk between 0.25 and 0.37, particle diameters
2𝑎 = 40 µm and 60µm, channel thicknesses 2𝑏 between 0.4mm and 1mm, oscillation strain
amplitudes 𝐴/𝑏 between 1 and 20, and oscillation periods 𝑇 between 1 s and 10 s. In all cases,
the particle and fluid densities (𝜌 ∼ 1) were matched to prevent buoyancy effects and, for
an average flow velocity 𝑈 = 2𝐴/𝑇 , the Reynolds number Re = 𝑈𝑏𝜌/𝜂f ranged between 0.01
and 5.

The wavelength 𝜆 of the pattern was found to be proportional to the channel thickness 2𝑏,
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Figure 1.17: a) Experimental setup from Roht et al. (2018) with an example of the captured images
below. b) Pattern wavelength 𝜆 versus the oscillation amplitude 𝐴, both normalized by the channel half
thickness 𝑏. Each marker type corresponds to a different combination of the experimental parameters
𝑎, 𝑏, and 𝜙bulk. See Roht et al. (2018) for details.

and to increase with the strain amplitude 𝐴/𝑏 from 𝜆 ≈ 2 𝑏 to 6 𝑏, as shown in Fig. 1.17b. The
observed pattern does not form instantaneously, but instead requires a certain time lapse 𝑡onset
to become visible (onset) and, afterwards, its contrast increases with time until a maximum is
reached. For a given time 𝑡 measured from the beginning of the oscillations, a characteristic
accumulated strain ̄𝛾 can be calculated by multiplying the number of oscillations 𝑡/𝑇 by twice
the strain amplitude 2𝐴/𝑏 (remember that 𝐴 is the average distance traveled during a half
oscillation), resulting in ̄𝛾 = 2𝐴𝑡/(𝑏𝑇 ). Then for 𝑡 = 𝑡onset, the strain accumulated before
the onset was found to be ̄𝛾onset ≈ 400 for 𝜙bulk = 0.35, without any clear trend regarding its
dependence on 𝐴/𝑏.

Finally, complementary experiments were performed using fluorescence and illuminating
with a laser sheet to observe the particle distribution in a plane oriented parallel to the
thickness of the channel (𝑧 direction) and to its length (𝑥 direction), and located roughly
at half distance across its width (𝑦 direction). A version of this technique improved for
the present doctoral thesis will be described in greater detail in Chapter 2. Figure 1.18
displays a sequence of images obtained from one of these experiments, where the bright and
dark regions correspond to higher and lower particle concentrations, respectively. Initially
(𝑡 = 0), the particles appear to be concentrated in the centerline, probably as a consequence
of shear-induced migration occurring in an earlier phase of the experiments. After a number
of oscillations (𝑡/𝑇 = 50), we observe that the central band of high concentration deformed
into a wavy pattern with a wavelength ≈ 7 𝑏. With even more oscillations (𝑡/𝑇 = 83), we find
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a new pattern formed by series of regions with high concentration (“dots”) located near the
center of the thickness, each separated by roughly half the value of the previous wavelength.

Figure 1.18: Sequence of images showing the particle distribution in a length-thickness plane inside
a channel for one example experiment with oscillations (𝜙bulk = 0.35, 2𝑎 = 40 µm, 2𝑏 = 1.2mm,
𝐴 = 5mm, 𝑇 = 1.2 s). The flow direction is horizontal, with walls above and below each image. The
bright zones correspond to a high particle concentration. From Roht et al. (2018)

It seems logical to conclude that the pattern previously observed as stripes in the plane
𝑥𝑦 (image in Fig. 1.17a), corresponds the pattern seen in the plane 𝑥𝑧 as a sequence of
“dots” (bottom image in Fig. 1.18). A comparison of the second (𝑡 = 33 𝑇 ) and third images
(𝑡 = 50 𝑇 ) in Fig. 1.18 suggests that the particles moved transversally to the main flow in
some locations along the 𝑥 direction, toward to top or bottom walls. The exact mechanism
responsible for this phenomena was not clearly identified at the end of the previous work, and
it remains an open question whether it might be similar to that responsible for the anomalous
migration toward the walls discussed in Sec. 1.7.2, or maybe the mechanism is more general
and not exclusive to suspensions, like the instabilities proposed by Hinch, Harris, and Rallison
(1992) and Brady and Carpen (2002) for fluids with nonuniform normal stress differences.

The observed behavior does not match any of the instabilities previously seen in sus-
pensions. For example, Moosavi et al. (2014) studied the oscillatory channel flow of sphere
suspensions and found filament-like irregular stripes aligned in the vorticity direction (like
the above ones), but their particles were less dense than the fluid and showed signs of re-
suspension during the oscillations. Moreover, the particles were more confined (𝑏/𝑎 = 0.5,
2𝑎 = 80 µm) and they only observed the pattern for suspensions with 𝜙bulk ≤ 0.14 and periods
𝑇 ≤ 0.17 (𝐴 = 0.42mm fixed), out of the ranges of parameters studied by Roht. Another
example is the work of Varga et al. (2019) which shows how particles that attract each other
in dilute suspensions (𝜙bulk < 0.1, 2𝑎 < 10 µm) segregate into periodic stripes formed by log-
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like structures aligned along the vorticity direction in simple shear flows, leaving clear fluid
in between. They found that the pattern only forms for shear rates below a critical value
that increases with the strength of the attractive interparticle force and decreases with the
viscosity. On the other hand, Roht (2017) shows that the stripe formation is not significantly
affected by changes in the viscosity between 9 and 26mPa s and, moreover, there is no reason
to expect large effects from non-hydrodynamic attractive forces between their particles as
they are large in size. More importantly, Roht tested suspensions with 𝜙bulk between 0.15
and 0.40 and only found the stripes pattern for 𝜙bulk ≥ 0.25 while, on the contrary, the
above two examples used dilute suspensions with much lower concentrations. In the case of
concentrated suspensions, periodic perturbations of the particle concentration and velocity
were found for shear-thickening suspensions near jamming, both in simple shear flows (Ovar-
lez et al. 2020; Saint-Michel, Gibaud, and Manneville 2018) and steady pipe flow (Bougouin
et al. 2024). These perturbations occur due to a transient jamming of the suspension in
some regions while it flows in others. Shear thickening in suspensions is commonly seen with
particles like cornstarch which have polymers on their surfaces or in particles small enough
that colloidal forces have a significant role, neither of which is the case for the PS and PMMA
spheres used by Roht which are large (2𝑎 ≥ 40 µm) and have (relatively) smooth surfaces.

In order to better understand the unique phenomena shown by Roht el al., the work
presented in this manuscript extends of these experiments using different, more local, types
of measurements. The objective is to obtain a detailed knowledge at the particle scale of the
behaviour of the velocity field of the particles and their spatial statistical distribution in the
oscillation flow and during the development of the instability. In the following chapter, the
experimental setup used will be explained in detail and, in Chapters 3-6, the results obtained
will be presented. At the conclusion of this thesis, in Chapter 6, we will pursue the discussion
started here using the new information.
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Chapter 2

Experimental setup and procedure

At the end of the last chapter, we presented an instability of the oscillatory flow of suspensions
inside Hele-Shaw cells, that is, inside narrow channels made from two parallel plates separated
by a gap 2𝑏much smaller than their other dimensions (length 𝐿 and width𝑊 ). In experiments
measuring the light transmitted across the gap, Roht (2017) observed the formation of a
pattern of periodic stripes aligned to the vorticity direction (width) and perpendicular to
the flow direction (length). On the other hand, their experiments looking at a view of the
channel rotated by 90° show that, in a plane parallel to the length and gap directions, the
particles can get organized in a wave-like pattern first and, then, in a pattern with periodic
pockets of high particle concentration separated along the length by a wavelength similar to
that of the striped patterns.

The second experiment suggested that the particles moved in both the directions of the
gap and the length to form the striped pattern, but limitations in the visualization technique
precluded the observation of particle trajectories or velocity fields. For the present thesis,
we improved the technique to track individual particles and their neighbors as the instabil-
ity develops, allowing us to connect this latter macroscopic behavior with the microscopic
descriptions of the particle interactions given in the previous chapter.

Consequently, we used transparent materials for the channels, the particles, and the fluids
in order to enable the optical observation of particles inside. We choose PMMA (i.e. acrylic)
for the particles since those are widely available and fluids matching the density and the
index of refraction of PMMA are well characterized and safe to handle. Index matching is
important to prevent the distortion of the light as it crosses multiple particle-fluid interfaces,
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resulting in a blurry view of the interior. Moreover, rectangular channels of PMMA with the
desired dimensions could be constructed, removing any light distortion at the walls. Some of
the particles inside were made visible by dyeing with a fluorescent dye either the fluid or a
fraction of the particles, and illuminating the channel with a laser sheet parallel to the length
and gap directions. In the illuminated region, the dye (either in the fluid or the particles)
shines in a specific wavelength which is observed preferentially using optical filters. With this
technique, we can differentiate between both phases (fluid and particles) in a plane located
at a position of our choosing inside the channel (usually in the middle of the width), and we
can reconstruct the trajectories of the particles present there using images recorded with a
video camera. Figure C.2 displays a simplified diagram of the experimental setup.

𝑥

𝑦

𝑧

2𝑏
Channel

𝑊Laser s
heet

PMMA spheres
2𝑎

Oscillatory flow
Camera

Figure 2.1: Simplified diagram of the experimental setup.

The following sections provide detailed descriptions of the particles, fluids and channels
used, as well as of how the flow was set up and the laser sheet was obtained. By the end,
we will go into the details of the particle tracking in the images and the processing of this
information to obtain macroscopic quantities like concentration and velocity fields.

2.1. Particles

The particles used were always spherical, made from poly(methyl methacrylate), i.e. PMMA,
and with nominal diameters 2𝑎 of 40, 60, and 85µm. In all cases, the size distribution
was roughly monodisperse. At 20ºC, PMMA has a density 𝜌p ≈ 1.19 g/cm3 and refractive
index 𝑛p ≈ 1.49, both small enough to be matched by the aqueous solutions utilized (see
Sec. 2.2). Other transparent materials, like glass, require difficult-to-handle liquids to match
both density and the refractive index simultaneously (Dĳksman et al. 2012). We used spheres
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from two manufacturers, Microbeads and Arkema, and although both were made from PMMA,
there were some practical differences in the way we had to deal with them.

2.1.1. Microbeads spheres

We used batches of spheres branded as Spheromers CA40 and CA60. Per granulometric
measurements, they have narrow size distributions with diameters 40.8 ± 0.6 µm and 63.7 ±
0.6µm, respectively (see the distributions in Fig. 2.2a and 2.3a). Figures 2.2b and 2.3b show
images of the spheres captured with a scanning electron microscope (SEM). Some roughness
on the surfaces can be perceived, but no quantification is possible at this scale.1
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Figure 2.2: Microbeads spheres CA40. a) Size distribution by volume. b) SEM image.
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Figure 2.3: Microbeads spheres CA60. a) Size distribution by volume. b) SEM image.

In our first experiments, a small fraction of the particles could not be index matched with
the fluid and looked like black disks in the experimental images. Moreover, they were less

1We thank C. Manquest from the FAST laboratory (France) for the granulometric measurements, and V.
Schmidt from the INFAP (San Luis, Argentina) for the SEM images.
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dense and tended to float, so, a possible explanation could be the presence of a gas bubble
inside. To filter out these spheres, we suspended a batch of spheres in an aqueous solution
with 23.5% NaCl (density 1176Kg/m3), and used a centrifuge to accelerate the segregation.
The problematic spheres clustered on the surface, while the rest, settled on the bottom. We
discarded the spheres on the top, rinsed the remaining ones with distilled water, and let them
dry before using in experiments.

In most of the experiments using these spheres, a fraction of them (≈ 2%) were previously
painted with rhodamine, a fluorescent dye used for visualization purposes (see Sec. 2.5). We
painted spheres by immersion in a solution of ethanol and rhodamine at 40ºC for roughly
thirty minutes and, then, we rinsed and dried them (Lenoble, Snabre, and Pouligny 2005).
We also performed experiments where we put the rhodamine in the suspending fluid instead of
the spheres, but the dye slowly penetrates the surfaces of these Microbeads spheres and makes
them shine with the laser light. In Sec. 2.5.2, we will see that this results in experimental
images where the particles visually overlap, making their individual detection difficult.

2.1.2. Arkema spheres

These spheres came in a polydisperse batch with diameters up to ≈ 200 µm. We divided
this batch into several ones with narrower size distributions using sieves with hole sizes equal
to 80, 90, 100, 125, 150 and 160µm. Figure 2.4 shows the characterization of the spheres
obtained between the sieves of 150 and 160µm. Notice that these spheres have larger surface
irregularities (relative to their sizes) than those from Microbeads.
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Figure 2.4: Arkema spheres, sieved between 150 and 160µm. a) Size distribution by volume. b) SEM
image.
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In this thesis, we will present results for the range 80 − 90 µm, since they have the most
convenient size ratio with the available channel gaps 2𝑏. Regrettably, we could not fully
characterize them due to the very small quantity obtained (≈ 20 g from 1Kg of unsieved
spheres), but experimental images (like those shown in Fig. 2.9) display disks of the expected
sizes within the experimental uncertainty. From now on, we will refer to them simply as the
85µm particles.

When these spheres were mixed with the fluid to make a suspension, a large amount of
bubbles were trapped inside, and attempting to remove them in a vacuum chamber did not
produce the desired result in a reasonable amount of time. Finally, we found that adding a
small amount of a surfactant to the fluid solved the problem. It is possible that these spheres
have hydrophobic surfaces. Furthermore, these spheres do not absorb rhodamine on their
surfaces, like those from Microbeads, making them easier to visually separate in experiments
with this dye in the fluid.

2.2. Fluids

We worked with two sets of solutions: one made from water (H2O), glycerine (C3H8O3) and
ammonium thiocyanate (NH4SCN); and another made from water, zinc chloride (ZnCl2) and
Triton X-100 (a polymeric fluid commonly used as detergent in laboratories). For the sake
of brevity, we will call the first thiocyanate-based and the second, triton-based.

2.2.1. Thiocyanate-based solutions

These solutions can match the density and refractive index of PMMA, and they are Newtonian
over a wide range of temperatures (Dĳksman et al. 2012). Their density and refractive index
vary depending on the temperature and the proportions of the total weight corresponding
to each of the three components (Bailey and Yoda 2003). We performed extensive tests in
order to obtain the best visualization possible with negligible particle sedimentation at the
temperature of our laboratory.

For these tests, we prepared several solutions with different proportions and then measured
their density 𝜌f and refractive index 𝑛f. Afterward, we added particles to each candidate
solution and introduced the resulting suspensions into the complete experimental setup, one
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at a time. Then, we took images to evaluate qualitatively the index matching (see examples
in Fig. 2.5). The density matching was evaluated taking images two minutes apart and
observing if the particles showed any significant displacements. Remember that our particles
are non-colloidal and should remain static if the buoyancy force is zero.

a b c

Figure 2.5: Images of 85µm spheres suspended in different thiocyanate-based solutions. The accu-
racy of the index matching improves from left to right by varying the proportions of the suspending
solution.

Finally a solution with 23.0% of water, 38.9% of glycerine, and 38.1% of ammonium
thiocyanate (all by weight) was used at a temperature 22± 1ºC. This solution has estimated
values of density 𝜌f ≈ 1.19 g/cm3, refractive index 𝑛f ≈ 1.49, and viscosity 𝜂f ≈ 7.6mPa s.2

For some experiments, we added ≈ 6.5 µm of rhodamine per gram of fluid to make it shine
under the laser light and allow for the visualization of the spheres. This was achieved using
water with an appropriate amount of rhodamine previously diluted.

2.2.2. Triton-based solutions

The thiocyanate-based solution has a viscosity larger than water, but not as large as other
fluids used in previous studies of suspensions at negligible Reynolds numbers. To completely
rule out inertial effects in our experiments, especially those related to unstable flows, we
performed experiments using a solution composed of 11.89% of water, 14.19% of zinc chloride,
and 73.91% of Triton X-100 (Pham, Butler, and Metzger 2016). This solution gave an
acceptable visualization of the particles at 21±1ºC, and we estimate that its viscosity ranges
between 2.4 and 4.6Pa s, from measurements reported in the literature (Snook, Butler, and
Guazzelli 2016; Sarabian et al. 2019).

2Density measured with an Anton Paar DMA 35M density meter. Refractive index measured with an Anton
Paar Abbemat WR MW refractometer. Viscosity measured with a Anton Paar Physica MCR 501 rheometer
with a CC27 head (cone-plate) and shear rates between 5 and 50 s−1.
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The reduction of Re by a factor ∼ 500 is of scientific interest, but it was accompanied by
several experimental difficulties. First, when a suspension is prepared, particles are added
to the fluid and then, mixed with a spoon. This process introduced bubbles that took a few
days to ascend and evacuate. Afterward, during the experiments, we had to reduce the flow
rates by a factor of ∼ 8, otherwise the observed velocities during injection and retraction of
the syringe were different, probably due to limitations of the syringe pump. This reduction
in the flow rate had the side advantage of further reducing Re.

In short, we had to take greater care during the preparation and equivalent experiments
took longer to perform. This is why we used this solution only in a few experiments intended
to validate the inertialess nature of our results by comparing with those performed with the
less-viscous solution.

2.3. Channels

We studied the suspension flow inside straight channels with rectangular cross sections and,
mostly, with large aspect ratios. The channels were made by cutting a slit of the desired gap
thickness 2𝑏 in a block of PMMA using a disk saw, down to the desired width 𝑊 . Afterwards,
the open side is covered with a glued PMMA plate or with adhesive tape. In either case, we
never looked through this side, nor made any measurements with the laser sheet near it. To
connect the channel with the pumping system (see Sec. 2.4), we used 3d-printed caps glued
at both ends of the channels, allowing the connection of flexible silicon tubes. The caps have
cavities inside which provide a gradual transition from the channel cross section to a circular
one appropriate for connecting the tubes. See a diagram and pictures in Fig. 2.6.

After a channel is prepared, we characterized it by filling it with water. First, we support
the channel with its length vertical, and connect it to a syringe with water. The water is
injected at a constant flow rate with the help of a syringe pump, and we record the water level
in the channel with a video camera. Processing the video, we determine the water height as a
function of time and its average velocity. The ratio between the flow rate and this velocity is
the channel cross-sectional area 𝑆 = 2𝑏𝑊 . Using visual measurements of 𝑊 (> 2𝑏, usually),
we determine 2𝑏. Table 2.1 lists the channels used, along with their measurements. We used
mostly channels of width 𝑊 ≈ 10mm and thickness 2𝑏 ≈ 1 or 2mm, though others were
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Figure 2.6: a) Diagram of a channel with dimensions 𝐿 × 𝑊 × 2𝑏 cut into a block of PMMA
and covered. b) Photograph of the cross section of a channel with 𝐿 = 150mm, 𝑊 = 10mm, and
2𝑏 = 2mm. c) Photograph of the 3d-printed channel cap.

2𝑏 𝑊 𝑊/(2𝑏) 𝑆
2.08 10.0 4.8 20.8
2.03 5.05 2.5 10.2
2 2 1 4 (nominal)
1.05 10.5 10.0 11.0
1.05 5.8 5.5 6.1
1.05 6.0 5.7 4.3
1.05 3.6 3.4 3.7
1.05 3.0 2.9 3.2
1.05 2.6 2.5 2.7
0.51 10.0 19.5 5.1

Table 2.1: Channels utilized and their measurements (𝑆 = 2𝑏𝑊 ). In all cases, 𝐿 = 150 cm.

constructed to investigate the influence of the aspect ratio 𝑊/(2𝑏).

2.4. Flow setup

After preparation, the suspension was transferred to a “large” syringe (capacity between 10
and 60ml) which was connected to the channel inlet through plastic tubes. A smaller syringe
(1ml) was also connected to the channel for a finer control of the imposed flow. Both syringes
were attached to syringe pumps and controlled from a computer using a program written in
the Python programming language. The smaller syringe was always connected to a Nemesys
NEM-B101-02 E low pressure module made by Cetoni GmbH, while the larger one could be
either connected to a second identical module or to a Harvard Apparatus model 22 pump,
depending on the availability of equipment. See the diagrams in Fig. 2.7.

To set up an experiment, the large syringe is first used to inject the suspension until
the channel is completely saturated. The channel outlet is connected to an extension tube to
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Figure 2.7: Schematic view of the experimental setup (a) and the visualization inside the gap (b).

prevent overflows. During this process, the channel must be vertical to prevent the entrapment
of large bubbles. We performed most experiments keeping the channel in this position, and a
few with the channel rotated by 90º to demonstrate the independence of the results from the
direction of gravity. After the system (syringes, tubes and channel) is completely saturated
with suspension, the pump with the small syringe is programmed to generate the desired flow,
usually symmetric square wave oscillations with periods 𝑇 between 1 and 20 𝑠, and maximum
flow rates such that the average particle velocity is of the order of 1mm/s.

Several experiments with the same suspension and channel, but different flow parame-
ters, could be performed sequentially. Between each, the channel is drained and filled again
with the large syringe to ensure similar starting conditions. If the suspension always enters
the channel in a well-mixed state, the subsequent results should be statistically equivalent.
However, we found some small differences in the initial particle velocity profiles across the
gap in sequential experiments with the same parameters. To remedy this situation, we added
five plastic “mixers” in the tube just before the inlet (see Fig. 2.7a). These mixers have a
helical shape with a diameter similar to that of the tube (≈ 4mm), and force the suspension
to follow non-straight paths, enhancing its homogenization.
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2.5. Particle visualization

During the preparation of a suspension, we dye with rhodamine 6G either some particles
or the fluid. Rhodamine 6G is a fluorescent dye that absorbs light with a wavelength of
≈ 530 nm (green) and emits with a peak wavelength ≈ 590 nm (orange). With this in mind,
we used a 80mW laser with a wavelength 𝜆laser = 532 nm to illuminate the suspension inside
the channel, and optical filters in front of the camera to partially reject light from sources
other than the fluorescence. We tested with two different filters: a high-pass filter that lets
the orange light pass, and a notch filter that filters out the green light. Both resulted in much
cleaner images than the unfiltered ones, without any significant difference between the filters
except, maybe, for the intensity of the observed light.

2.5.1. Laser sheet

The laser beam is shaped into a plane sheet by the system of lenses described in Appendix A.
The resulting laser sheet has a thickness 𝑆sheet which is roughly uniform over a distance
𝜋𝑆2

sheet/(2𝜆laser) inside the channel gap. Then, 𝑆sheet can be no smaller than ≈ 26 µm while
remaining uniform over the whole span of the largest channel gap used in our experiments,
2𝑏 = 2mm. This limits our ability to visualize the particles located only in one plane when
their diameter 2𝑎 is similar to 𝑆sheet.

Figure 2.8 shows schematically pairs of spheres illuminated by laser sheets which are
thin (a) o thick (b) with respect to the sphere diameter 2𝑎. Assuming that we have dyed the
fluid, the volume illuminated by the laser sheet will shine due to the fluorescence everywhere
except in the shaded regions where the spheres and the laser sheet intercept.3 When viewed
by a camera located above, each sphere will be viewed as a dark disk of radius 𝑎̃ ≤ 𝑎,
depending on the distance |𝑧| of its center to the laser sheet (see left figure). If the laser sheet
is thick (right), two nearby spheres may be viewed as overlapping disks by the camera. In the
following section, we will see images with examples of disks with different sizes or overlapping
and how this affects the visualization of the particles.

3If the dye is in the spheres instead of the fluid, then, the shaded regions are the ones shinning, while the
rest of the volume remains dark. In either case, we will observe the particles as disks, or as rings if they only
shine on their surface.
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Figure 2.8: Pairs of spheres illuminated by laser sheets that are either thin (a) or thick (b) relative
to the sphere diameter 2𝑎. A camera looks from above. a) Two identical spheres are seen by the
camera as disks with different radii 𝑎̃, depending on their vertical distance |𝑧| with respect to the thin
laser sheet. b) Two spheres seen as overlapping disks when the laser sheet is too thick.

2.5.2. Camera

A video camera connected to a computer looks at the plane illuminated by the laser sheet,
as previously shown in the diagrams of Fig. 2.7. Two camera models were used alternatively,
both with similar characteristics: a Basler acA1920-155um (1936px × 1216 px) or an IDS
uEye UI337xCP-M (2048px× 2048 px). The captured images show a region of ≈ 20mm by
2𝑏 which occupies the whole width of the sensor, and a height between 100 and 200px. We
usually work with 48 fps, and never exceeded 200 fps. Attached to the camera, we used a
55mm adjustable macro lens to put into focus the observed plane.

Figure 2.9 displays examples of images where spherical particles can be seen as either
disks or rings, depending on whether the fluorescent dye was put in the fluid or on spheres,
and whether the spheres can absorb it from the fluid. During the experiments, the particles
move mostly horizontally (𝑥 direction, channel length). Images (e-g) show experiments with
dyed fluid and all the particles in the plane visible. In this case, the larger spheres [85µm,
see image (e)] do not present significant overlaps, while the smaller ones [40µm, see image
(g)] can be difficult to separate visually. Image (f) with 60µm-diameter particles is an inter-
mediate case which is still challenging to analyze. The particles manufactured by Microbeads
[images (f,g)] have the appearance of shining rings because they absorb at their surface the
rhodamine in the fluid.4 On the other hand, the particles from Arkema in image (e) show
clean contours implying no significant absorption of the dye from the fluid. In this image,
dark disks with different radii can be seen, of which the smallest have roughly half the radius
of the largest ones. As explained before, this is a natural consequence of the illumination by

4This was verified later by retrieving the particles from the liquid using a cloth filter, washing and drying
them in the process, and illuminating them with the laser: they shined orange as proof of their fluorescence.
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Figure 2.9: Example images. The contrast was increased to aid the eye. The top four images (a-d)
show the full captured region, while the bottom four (e-h) are enlargements of small regions of the
same images. The relevant parameters are: (a,e) 85µm Arkema spheres in dyed fluid, 𝜙bulk = 0.40,
2𝑏 ≈ 2mm; (b,f) 60µm Microbeads spheres in dyed fluid, 𝜙bulk = 0.30, 2𝑏 ≈ 1mm; (c,g) 40µm
Microbeads spheres in dyed fluid, 𝜙bulk = 0.40, 2𝑏 ≈ 1mm; (d,h) dyed 40µm Microbeads spheres in
clean fluid, 𝜙bulk = 0.40, 2𝑏 ≈ 1mm, 1% of the spheres dyed.

a laser sheet (see Fig. 2.8a).

Finally, we performed experiments using only the configurations for which the particles
could be clearly distinguished: 85µm particles in a dyed fluid and dyed 40µm particles in a
clear fluid. Although some experiments with dyed 60µm particles were also performed, their
results were similar enough to those with the 40µm particles so that we decided to omit them
from this thesis.

2.5.3. Supporting structure

The channel, the laser system and the camera were attached to a structure made from metallic
profiles as shown in Fig. 2.10. The relative positions of every element could be adjusted. In
particular, by moving the channel laterally, it was possible to change the observed plane,
although we mostly performed experiments looking at a plane in the middle of the width, as
sketched in Fig. 2.7.
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Figure 2.10: View from above of the working experimental setup. Elements in view: laser and lenses
(top), pump with two syringes (middle), camera with macro lens (right), PMMA channel (top right).

2.6. Image analysis

After the suspension is prepared and fills the channel, and we have a good visualization of
the particles through the camera, we can perform experiments with the desired flows. The
process control is fully automated: using a Python script, the camera and pump operations
are coordinated. First, the camera starts recording and, then, the pump starts the desired
flow, for example, a number of square wave oscillations. When the programmed flow finishes,
the camera stops recording. Afterward, the resulting video records are processed in the
computer to detect and track the particles present. The video acquisition, storage, and
particle tracking is done with a computer program developed during this thesis using the C
programming language.

2.6.1. Particle detection

Each video is composed of a sequence of images like those presented in Fig. 2.9. To identify
the particles in each image, we use a process similar to template matching where we define a
template to find (i.e. the shape of the particles), perform a convolution between the image
and the template, and finally extract the particle positions by looking for local maxima.

Each experimental image is a two-dimensional array of values proportional to the light
intensity captured at the corresponding cell of the camera sensor. The template is also an
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image, but with its values generated artificially to match an idealized vision of the particles
we look for. Our particle detection process is based on the convolution operation that, given
an image 𝐼 and a template 𝑇 , is defined as

(𝐼 ∗ 𝑇 )(𝑥, 𝑦) = ∫∫𝐼(𝑥 − 𝑢, 𝑦 − 𝑣) 𝑇 (𝑢, 𝑣)d𝑢d𝑣. (2.1)

The advantage of using convolutions to find occurrences of the template in the image is that
their calculation can be greatly accelerated by the use of the fast Fourier transform (FFT).

Before processing a video, we select a number 𝑀 of different disk radii 𝑎𝑖 (𝑖 = 1..𝑀)
that we want to find in each image. Then, we generate corresponding templates 𝑃𝑖 using the
shape of either a disk or a ring depending of the appearance of the particles in the image.
For example, Figure 2.11a-d shows four disks of different sizes generated to process images
like that shown in Fig. 2.9a,e.

These templates can be detected more precisely in the images if we use instead templates
𝑇𝑖 = 𝑃𝑖 ∗ 𝐿 which result from the convolution with a Laplacian kernel

𝐿 =
⎡
⎢
⎢
⎢
⎣

0 −1 0
−1 4 −1
0 −1 0

⎤
⎥
⎥
⎥
⎦

. (2.2)

Figure 2.11e-h displays the resulting templates 𝑇𝑖 for the previous example disks. The con-
volution with the Laplacian kernel produces templates where the inner edge of the disks has
positive values (blue) and the outer edge, negative ones (red). These templates 𝑇𝑖 will result
in large values of the integral in Eq. (2.1) when there is a disk of radius 𝑎𝑖 centered at the

a b c d

e f g h

i

Figure 2.11: Templates 𝑃𝑖 (a-d) and 𝑇𝑖 (e-h) used for the detection of disks with radii 𝑎 = 2, 3, 4,
and 5 pixels. Blue and red correspond to positive and negative values, respectively. i) Experimental
image with the detected disks marked by yellow circles.
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position (𝑥, 𝑦) in the image and the surrounding area is clear of other disks.

After the initial preparation, we process each image 𝐼 of the video by computing accumu-
lator images 𝐴𝑖 = 𝐼 ∗𝑇𝑖 for 𝑖 = 1..𝑀 , and locating the local maxima that surpass a threshold
value in each accumulator. Each of such positions (𝑥, 𝑦) corresponds to a candidate for a
detected disk, with its radius 𝑎 taken to be equal to the radius 𝑎𝑖 of the accumulator with
the largest value in that position.

The resulting list of candidates is further trimmed by removing candidates overlapping
(we keep the one with the largest value in the accumulator) and those with a very uneven
intensity distribution inside, usually artifacts near the walls at the top and bottom. An
example of the resulting detection is shown in Fig. 2.11i.

Finally, the precision of the positions is improved to subpixel resolution by fitting neigh-
boring values in the corresponding accumulator 𝐴𝑖 to a Gaussian curve along each direction.
For example, if a disk of radius 𝑎𝑖 was detected at position (𝑥, 𝑦), then, 𝐴𝑖(𝑥, 𝑦) is a local
maximum and the refined 𝑥 position is

𝑥 + [𝐵(𝑥 + 1, 𝑦) − 𝐵(𝑥 − 1, 𝑦)]/2
2𝐵(𝑥, 𝑦) − 𝐵(𝑥 − 1, 𝑦) − 𝐵(𝑥 + 1, 𝑦) (2.3)

where 𝐵(𝑥, 𝑦) = log[𝐴𝑖(𝑥, 𝑦)], and 𝑥 and 𝑦 are always integer values corresponding to the
position in measured in pixels.

2.6.2. Particle tracking

After we locate the particles in each image, we want to track their movements during the
video to obtain trajectories and velocities. Given two consecutive images 𝐼𝑡 and 𝐼𝑡+1, where
𝑡 is a discrete time variable, we seek to establish a correspondence between the particles
detected in both images such that we can determine whether a disk found in 𝐼𝑡 and another
one found in 𝐼𝑡+1 correspond to the same physical particle that was displaced in the interval
between the images.

The procedure is simple: for each disk centered at 𝒙𝑡 = (𝑥𝑡, 𝑦𝑡) in an image 𝐼𝑡, we find
the disk which is closest in the next image 𝐼𝑡+1 and, if their separation is below a threshold,
we consider them to be the same particle. Repeating this process for each successive pair of
images, we obtain trajectories of the particles as sequences of points in time. For this process
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to work reasonably well, the time lapse between images must be small enough to prevent any
confusion over the identity of a particle (usually the disks in successive images must overlap).
In view of this, we configured the camera frames per second (fps) to scale approximately as
the maximum particle velocity, which is proportional to the pump flow rate and inversely
proportional to the area of the channel cross section.

Several improvements can be brought to the previous procedure. First, using the instan-
taneous velocity of a particle at time 𝑡, 𝒗𝑡 = (𝒙𝑡−𝒙𝑡−1)/2, we may predict its position at time
𝑡 + 1 as 𝒙𝑡 +𝒗𝑡. Then, the distance between the predicted position and the detected one can
be used to make the process less sensitive to the frame rate (fps), but this can backfire if there
are sudden changes in the velocities, like a flow reversal, in which case this procedure must
be temporarily disabled. Furthermore, these predictions can be extended to more than one
step in the future, allowing for the continuation of trajectories when a particle is temporarily
lost due, for instance, to an imperfection in the illumination.

Smoothing the trajectories

The trajectories obtained by the tracking procedure are noisy, and this can be especially
problematic for the analysis of displacements in the direction transversal to the main flow.
To improve the signal to noise ratio, we use a smoothing procedure that takes into account
particle positions several time steps before and after the current one.

Given a dynamic variable 𝑋, for example the longitudinal position 𝑥 of a particle, we
apply a linear filter to obtain

𝑋̂𝑡 =
𝑟

∑
𝑖=−𝑟

𝛼𝑖𝑋𝑡+𝑖, (2.4)

where 𝑟 is a smoothing radius (a positive integer), and 𝛼𝑖 are fixed coefficients calculated
using the procedure proposed by Savitzky and Golay (1964). This filter is equivalent to
fitting a polynomial of order 𝑝 to the data in the window [𝑡 − 𝑟, 𝑡 + 𝑟] and taking its value at
time 𝑡. It is also possible to calculate coefficients to obtain smooth numerical derivatives of
any order, something we use to calculate the instantaneous velocity 𝒗𝑡 of a particle from its
past and future positions.

Figure 2.12 displays the coordinates, velocity components and their smoothed values for
one example trajectory. The smoothing was done with 𝑝 = 2 and 𝑟 = 8. The particle



A. A. García − Doctoral thesis − December 15, 2025 Page 52 of 156

400

800

1200

0 576 1152 1728

𝑥
[p
x]

𝑡 [frames]

a

−4

−2

0

2

4

0 576 1152 1728
𝑣 𝑥

[p
x]

𝑡 [frames]

b

−4

−2

0

2

4

0 576 1152 1728

𝑣 𝑥
[p
x]

𝑡 [frames]

Smoothed
c

110

120

130

0 576 1152 1728

𝑦
[p
x]

𝑡 [frames]

d

−0.4

−0.2

0

0.2

0.4

0 576 1152 1728

𝑣 𝑦
[p
x]

𝑡 [frames]

e

−0.2

−0.1

0

0.1

0.2

0 576 1152 1728
𝑣 𝑦

[p
x]

𝑡 [frames]

Smoothed
f

Figure 2.12: Dynamic variables of one example tracked particle: position (a,d), velocity (b,e),
smoothed velocity (c,f).

undergoes an oscillatory motion in the 𝑥 direction, as evidenced by the top row of plots, and
it may be possible to perceive a modulation of the transverse motion in plots (d) and (e), but
a clear periodicity can be seen only in plot (f) with the smoothed transversal velocity 𝑣𝑦.

From now on, we will drop the hat notation (“̂”) for smoothed variables and present
further results already smoothed unless otherwise stated.

2.7. Data analysis

In this section, we explain the further data analysis performed on the results of the particle
tracking. At a given time 𝑡, we know the positions 𝒙𝑝 = (𝑥𝑝, 𝑦𝑝), velocities 𝒗𝑝 = (𝑣𝑝𝑥, 𝑣𝑝𝑦),
and apparent radii 𝑎𝑝 of 𝑁 tracked particles in the observed slice, where the index 𝑝 = 1...𝑁
identifies each particle. Then, we obtain spatial averages by subdividing the 𝑥𝑦 plane into
rectangular bins with dimensions Δ𝑥 × Δ𝑦 and calculating statistics for the particles inside
each one.
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2.7.1. Concentration, velocity and velocity fluctuations fields

The sum of the area occupied by the particles in a bin centered at (𝑥, 𝑦) divided by the bin
area gives the particle area fraction

𝜙2D(𝑥, 𝑦) =
1

Δ𝑥Δ𝑦 ∑
𝑝∈bin

𝜋𝑎2𝑝, (2.5)

which is statistically equal to the volume fraction 𝜙, a fact know as the Delesse principle
in stereology theory (Delesse 1847; Mayhew and Orive 1974). This calculation requires an
accurate detection of all the particles in a thin slice and a determination of their sizes,
something we only have for the experiments with the 85µm particles in a dyed fluid, where
we see clearly all the particles in a slice with a thickness much smaller than the particles. On
the other hand, in the experiments with 40µm particles, we only see ≈ 2% of the particles
present and the thickness of the slice allows for some overlap between the observed disks.
In this latter case, the above calculation underestimates the value of 𝜙 and we corrected it
by introducing a multiplicative factor that makes the average value of 𝜙2D equal to the bulk
volume fraction 𝜙bulk known from the suspension preparation. This correction assumes that
we detect particles inside any given bin (𝑥, 𝑦) in proportion to their concentration there, but
it is possible that detection errors occur more frequently in zones where the concentration
is large and overlapping disks are more common. For this reason, our analysis of the local
values of 𝜙 will be only qualitative for the experiments with the smaller particles.

In some cases, we are also interested in the two-dimensional particle number density

𝑛2D(𝑥, 𝑦) =
𝑁bin(𝑥, 𝑦)
Δ𝑥Δ𝑦 = 1

Δ𝑥Δ𝑦 ∑
𝑝∈bin

1, (2.6)

where 𝑁bin(𝑥, 𝑦) is the number of detected particles whose centers are inside the bin centered
at (𝑥, 𝑦).

Furthermore, we can calculate the particle velocity field 𝑉 (𝑥, 𝑦) using the average velocity
of the particles detected inside each bin:

𝑽 (𝑥, 𝑦) = 1
𝑁bin(𝑥, 𝑦)

∑
𝑝∈bin

𝒗𝑝. (2.7)
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Note the uppercase 𝑉 for the average, and the lowercase 𝑣 for the individual particle velocities.
Similarly, we may estimate a velocity fluctuations tensor

𝑇𝑖𝑗(𝑥, 𝑦) =
1

𝑁bin(𝑥, 𝑦)
∑
𝑝∈bin

[𝑣𝑝𝑖 − 𝑉𝑖(𝑥, 𝑦)][𝑣𝑝𝑗 − 𝑉𝑗(𝑥, 𝑦)], (2.8)

where the indices 𝑖, 𝑗 correspond to the dimensions 𝑥, 𝑦, 𝑧.

During the beginning of each experiment, the flow is mostly laminar and the only signif-
icant variations of the above fields are in the direction 𝑦. For this reason, we use bins that
extend across the full width of the images to analyze this situation, obtaining profiles that
depend only on 𝑦, e.g. 𝜙(𝑦), 𝑉𝑥(𝑦). The bin size Δ𝑦 is set to one pixel (≈ 10 µm), and we rely
on the time-averaging procedures described in Sec. 2.7.3 in order to collect enough statistical
data inside each bin.

To analyze the flow during the instability, when variations in both directions are impor-
tant, we divide the observed plane in a rectangular grid with bins of equal size Δ𝑥 ≈ 580 µm
by Δ𝑦 ≈ 133µm. As a reference, we detect on average 4000 particles in each image of the
experiments using the 85µm particles, resulting in roughly 8 particles per bin.

2.7.2. Pair correlations

The previous statistical quantities consider each particle individually, but to understand the
interactions between particles, it is useful to have information on the relative positions and
velocities of nearby particles. In Sec. 1.5, we established the pair distribution function (pdf)
as the preferred tool for such a purpose. Here, we describe our procedure for its calculation,
which is similar to that used by Blanc, Lemaire, et al. (2013).

• First, we exclude detected particles whose apparent radius is less than 0.8𝑎, where 𝑎 is
an estimation of the real spherical radius. This ensures that all the particles considered
are roughly in the same plane (𝑧 ≈ 0 in Fig. 2.8a) and the observed two-dimensional
relative positions match the real ones.

• For each particle 𝑝 with its center inside a bin centered at (𝑥, 𝑦), we consider all other
particles 𝑞 up to a distance 6𝑎 and make a list of pairs. The particle 𝑞 does not need
to be in the same bin as particle 𝑝.
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• The relative positions 𝒓𝑞𝑝 = 𝒙𝑞−𝒙𝑝 and velocities 𝒗𝑞𝑝 = 𝒗𝑞−𝒗𝑝 are computed for each
pair.

• The space (𝑟𝑥, 𝑟𝑦) of relative positions is subdivided into bins of size Δ𝑟𝑥 × Δ𝑟𝑦 with
Δ𝑟𝑥 = Δ𝑟𝑦 ≈ 2.5 µm.

• Inside each of these bins we count the number of pairs 𝑁pair(𝑥, 𝑦, 𝑟𝑥, 𝑟𝑦) and calculate
the average relative velocity 𝑽pair(𝑥, 𝑦, 𝑟𝑥, 𝑟𝑦).

Summarizing, a pair of particles 𝑝 and 𝑞 contribute to the bin labeled (𝑥, 𝑦, 𝑟𝑥, 𝑟𝑦) if

|𝑥𝑝 − 𝑥| < 1
2Δ𝑥, |𝑦𝑝 − 𝑦| < 1

2Δ𝑦,

|𝑥𝑞 − 𝑥𝑝 − 𝑟𝑥| < 1
2Δ𝑟𝑥, and |𝑦𝑞 − 𝑦𝑝 − 𝑟𝑦| < 1

2Δ𝑟𝑦. (2.9)

With this information, we may estimate the probability density 𝑃(𝑥, 𝑦, 𝑟𝑥, 𝑟𝑦) of finding
a particle in a position (𝑥 + 𝑟𝑥, 𝑦 + 𝑟𝑦), given that a reference particle is present at (𝑥, 𝑦), as

𝑃(𝑥, 𝑦, 𝑟𝑥, 𝑟𝑦) =
𝑁pair(𝑥, 𝑦, 𝑟𝑥, 𝑟𝑦)
𝑁bin(𝑥, 𝑦)Δ𝑟𝑥Δ𝑟𝑦

, (2.10)

where 𝑁bin(𝑥, 𝑦) is the number of particles inside bin (𝑥, 𝑦) (see Eq. 2.6). As explained in
Sec. 1.5, 𝑃 is equal to the particle number density 𝑛 if the particles are randomly distributed
everywhere, and 𝑔 = 𝑃/𝑛 is called the pair distribution function. In our case, we calculate 𝑔
at different positions (𝑥, 𝑦) by replacing 𝑛 by 𝑛2D(𝑥, 𝑦) from Eq. (2.6):

𝑔(𝑥, 𝑦, 𝑟𝑥, 𝑟𝑦) =
𝑃(𝑥, 𝑦, 𝑟𝑥, 𝑟𝑦)
𝑛2D(𝑥, 𝑦)

. (2.11)

It is also possible to represent the relative pair position in polar coordinates as (𝑟𝑥, 𝑟𝑦) =
[𝑟 cos(𝜃), 𝑟 sin(𝜃)]. Then, binning only along 𝑟 we may calculate the radial pair distribution

𝑔(𝑥, 𝑦, 𝑟) = 𝑁pair(𝑥, 𝑦, 𝑟)
𝑛2d(𝑥, 𝑦)𝑁bin(𝑥, 𝑦) 2𝜋𝑟Δ𝑟. (2.12)

Here, 2𝜋𝑟Δ𝑟 is the area of the bin in the space of the variables (𝑟, 𝜃), with Δ𝑟 ≈ 2.5 µm. We
are also interested in the angular distribution of pairs almost in contact. For its calculation,
we include only the pair that have |𝑟−𝑟peak| < 1

2Δ𝑟peak, with 𝑟peak ≈ 1.9 𝑎 and Δ𝑟peak ≈ 0.3 𝑎.
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The last two values were estimated from the radial distribution, and will be explained in
more detail when the corresponding results are discussed. Then, we subdivide the space of
the variable 𝜃 ∈ [−𝜋, 𝜋) into 48 segments of sizeΔ𝜃, and compute the angular pair distribution
as

𝑔(𝑥, 𝑦, 𝜃) = 𝑁pair(𝑥, 𝑦, 𝜃)
𝑛2d(𝑥, 𝑦)𝑁bin(𝑥, 𝑦) 𝑟peakΔ𝜃Δ𝑟peak

. (2.13)

A large amount of particle pairs is required to correctly calculate 𝑔 due to the double
binning involved. For that reason, we use averages in time and across multiple experiments
(as explained in the following section), and we usually bin the image space only in 𝑦, obtaining
in effect 𝑔(𝑦, 𝑟𝑥, 𝑟𝑦), 𝑔(𝑦, 𝑟) and 𝑔(𝑦, 𝜃). For the sake of simplicity, we will refer to them without
the explicit dependence on 𝑦 from now on, e.g. 𝑔(𝑟𝑥, 𝑟𝑦).

2.7.3. Temporal averaging

All the previously presented quantities are instantaneous, that is, they are functions of time
𝑡 even if not explicitly shown before, and we may take their averages over multiple times
to improve the quality of the results (reduce noise). Most of our experiments use oscillatory
flows without a net displacement, where the flow direction is periodically reversed as sketched
in Fig. 2.13. In these experiments, there are two time scales of interest: the time between
two consecutive reversals, when the suspension experiences a transient reorganization, and
the long-term evolution of the system.

𝑡0 𝑡0.5 𝑡1 𝑡1.5 𝑡2 𝑡𝑀−1 𝑡𝑀−0.5 𝑡𝑀

Figure 2.13: Diagram showing different times of interest during an experiment with oscillatory
flow. Each oscillation is divided in two halves of identical duration, but opposite mean flow direction
(arrows).

To study the short-term variations, we perform ensemble averages over multiple oscilla-
tions. Given a dynamic variable 𝑋(𝑡), for example 𝑋(𝑡) = 𝑉𝑥(𝑦, 𝑡) for some 𝑦, the ensemble
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average over 𝑀 oscillations is calculated as

𝑋̃(𝑡) = 1
𝑀

𝑀−1
∑
𝑖=0

𝑋(𝑡𝑖 + 𝑡), (2.14)

where 𝑡𝑖 is the time when the oscillation 𝑖 + 1 starts (see Fig. 2.13). The 𝑀 oscillations
selected for the average do not encompass whole experiments; instead, different averages 𝑋̃
are obtained during each stage of the development of the instability, as explained in the next
chapter.

To study the long-term evolution, we determine first the lapse Δ𝑡qss required to reach a
quasi steady state (qss) after each flow reversal. We consider that the suspension is in quasi
steady state when some key dynamic variables no longer change significantly with time, the
exact criteria will be made explicit along with the results in the next chapter. Then, for
each period between consecutive reversals, we calculate the average value of 𝑋 (a variable of
interest) between a time Δ𝑡qss since the last reversal and until the next one, obtaining 2𝑀
values for an experiment with 𝑀 oscillations.

From each oscillation 𝑖 we obtain two values, lets say 𝑋𝑖+ and 𝑋𝑖−, corresponding to
the halves of oscillation with the suspension going forward (+) and backward (−). For
variables that do not change sign, like the local particle volume fraction 𝜙, we average both
to obtain 𝑀 values 𝑋𝑖 = (𝑋𝑖++𝑋𝑖−)/2. On the other hand, for variables like the longitudinal
velocities 𝑉𝑥 which have sign inversions after each flow reversal, the result of the sum would
be roughly zero. Instead, we use 𝑋𝑖 = (𝑋𝑖+−𝑋𝑖−)/2 in those cases to retain the information
of interest. Something similar is done for the averaging of the pair distribution function 𝑔,
since the particle reorganization processes occurring during each half of the oscillations are
similar, but with microstructures mirrored along the 𝑥 direction compared to one another.
Therefore, we invert the signs of the relative longitudinal positions 𝑟𝑥 and velocities 𝑣𝑥 of the
pairs during the backward flow (−), before proceeding with averaging.

Finally, we also average the results from different experiments with physically equivalent
parameters. The procedure is the same as the ensemble average of Eq. (2.14), but using
multiple experiments instead of multiple oscillations.
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2.7.4. Auto- and cross-correlations

In our experiments, we observe an instability that introduces spatially-periodic patterns in the
particle concentration and velocity fields (see Chapter 4 for details). In order to characterize
the time evolution of one of these patterns we will use correlations between its values at
different positions and at different times.

The correlation between two function 𝑓(𝑥) and 𝑔(𝑥) defined for 𝑥 ∈ [𝑥1, 𝑥2] is

𝐶𝑓𝑔(𝛿𝑥) =
1

𝑥2 − 𝑥1
∫

min(𝑥2,𝑥2−𝛿𝑥)

max(𝑥1,𝑥1−𝛿𝑥)
[𝑓(𝑥) − 𝜇𝑓 ] [𝑔(𝑥 + 𝛿𝑥) − 𝜇𝑔] d𝑥, (2.15)

where 𝛿𝑥 is called the lag, and 𝜇𝑓 and 𝜇𝑔 are respectively the mean values of 𝑓 and 𝑔, taken
to be both zero for the functions that interest us.

As a concrete example, we show in Fig. 2.14a the transverse velocity along the channel
center line, 𝑉𝑦,cen(𝑥, 𝑡), for a typical experiment with the instability fully developed. The blue
curve corresponds to a time 𝑡1, and the red curve, to a later time 𝑡2 ≈ 𝑡1 + 1 s. Observe that
both curves are roughly periodic along 𝑥, with a wavelength 𝜆 ≈ 3.5mm, and the curve at
time 𝑡2 is displaced ≈ 1mm to the right with respect to other curve. Our objective here is
to obtain an amplitude 𝐴𝑉𝑦

(𝑡) and a wavelength 𝜆𝑉𝑦
(𝑡) for each curve, and a travel velocity

𝑉𝑉𝑦
between them.
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Figure 2.14: a) Function 𝑉𝑦,cen(𝑥, 𝑡) plotted against 𝑥 for two specific times 𝑡1 (blue) and 𝑡2 ≈ 𝑡1+1 s
(red), when the instability is fully developed in a typical experiment (40µm particles, 1mm channel
gap, 𝜙bulk = 0.40). b) Autocorrelation of the curve for time 𝑡1. c) Cross-correlations between both
curves from (a).

The autocorrelation of 𝑉𝑦,cen(𝑥, 𝑡1) is shown in Fig. 2.14b. Observe that it has the same
periodicity as the curves on the left, with a maximum at 𝛿𝑥 = 0 and a second peak at
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𝛿𝑥peak ≈ 3.5mm. For a perfectly periodic variable, e.g. 𝑓(𝑥) = 𝐴𝑓 sin(2𝜋𝑥/𝜆), with an integer
number of oscillations inside the range [𝑥1, 𝑥2], the following relations can be demonstrated:

𝜆 = 𝛿𝑥peak, 𝐴𝑓 = √2 𝑥2 − 𝑥1
𝑥2 − 𝑥1 − 𝜆 𝐶𝑓𝑓(𝛿𝑥peak), (2.16)

where 𝐶𝑓𝑓(𝛿𝑥) is the autocorrelation of 𝑓(𝑥). In our analysis of the experimental data, we
assume that only one wavelength is relevant and use the above relations to estimate the
wavelengths and the amplitudes of relevant variables at each time during the experiment.

To determine the travel velocity 𝑉𝑉𝑦
, we use the cross-correlation between 𝑓(𝑥) = 𝑉𝑦,cen(𝑥, 𝑡1)

and 𝑔(𝑥) = 𝑉𝑦,cen(𝑥, 𝑡2) shown in Fig. 2.14c. The maximum value at 𝛿𝑥max ≈ 1mm cor-
responds to the lag at which both curves are most similar, then, it is clear that 𝑉𝑉𝑦

=
𝛿𝑥max/(𝑡2 − 𝑡1) ≈ 1mm/s.

Finally, using the value 𝛿𝑥max from the cross-correlation between two different variables
𝑓 and 𝑔 measured at the same time 𝑡 and with the same wavelength 𝜆, we may calculate a
phase relation 𝜙𝑓𝑔 = 2𝜋𝛿𝑥max/𝜆. For example, 𝜙𝑓𝑔 = 𝜋/2 means that 𝑔 is displaced to the
right of 𝑓 by a quarter of wavelength.
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Chapter 3

Presentation of the instability and

reference quasi-steady state

In the previous chapter, we described our experiments with suspensions undergoing oscillatory
channel flow. From our observations, and those of Roht (2017), we know that each of these
experiments can be divided into roughly two stages: a first one where the flow is laminar and
shear-induced migration may be observed in some cases, and a second stage where a velocity
component transverse to the main flow becomes significant and the particles get organized
into a pattern periodic along the main flow direction.

We begin this chapter with an overview of a typical experiment, making explicit the
distinctions between those two stages. Then, we restrict our attention to the state of the
suspension just before the beginning of the second stage, in order to understand the situations
that give rise to the unstable flow occurring afterward. We delay a thorough description of
the instability until Chapters 4 and 5.

3.1. Development of the instability in a typical experiment

Figure 3.1 displays a series of images captured during a typical experiment using a bulk
particle volume fraction 𝜙bulk = 0.40, particles with diameter 2𝑎 ≈ 85 µm, and a channel of
thickness 2𝑏 = 2.08mm and width 𝑊 = 10.0mm. During the experiment, a syringe pump
induced a symmetric square-wave flow with a period 𝑇 = 12 s and a maximum flow rate
𝑄0 = 24mm3/s that, given a channel cross section 𝑆 = 20.8mm2, resulted in an absolute
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average velocity of the suspension 𝑉s = 𝑄0/𝑆 ≈ 1.15mm/s and a Reynolds number Re =
𝑉s𝑏𝜌f/𝜂f ≈ 0.2. Following the notation introduced in Sec. 1.8, we will present temporal
variations as functions of either the characteristic accumulated strain ̄𝛾 = 𝑡𝑉s/𝑏 or the number
of oscillations 𝑡/𝑇 . Between two flow reversals (a half oscillation), the suspension travels a
distance 𝐴0 = 𝑉s𝑇/2 ≈ 6.92mm on average and, from now on, we will characterize the
oscillation amplitudes by the characteristic strain ̄𝛾0 = 𝐴0/𝑏 = 𝑉s𝑇/(2𝑏) which is ≈ 6.66 in
this case.

The images in Fig. 3.1 show views at successive times 𝑡 of a plane parallel to the channel
length (𝑥 direction) and thickness (𝑦 direction), and located at the middle of the width
(𝑊/2 = 5mm from the lateral walls). The particles intersected by the plane can be seen as
black disks in a white background corresponding to the suspending fluid.

𝑡 = 0 ̄𝛾 = 0

𝑥
𝑦 2𝑏

𝑡 = 14 𝑇 ̄𝛾 = 185

𝑡 = 29 𝑇 ̄𝛾 = 385

𝑡 = 41 𝑇 ̄𝛾 = 545

Figure 3.1: Sequence of images taken at different times 𝑡 from an experiment with a oscillatory flow
in the 𝑥 direction. Parameters: 𝜙bulk = 0.40, 2𝑎 ≈ 85µm, 2𝑏 ≈ 2.1mm, 𝑉s = 1.15mm/s, 𝑇 = 12 s,
̄𝛾0 = 𝑇 𝑉s/(2𝑏) = 6.66.

The first image (𝑡 = 0) presents the initial state of the suspension just after the channel
was filled and before any oscillations. The particle concentration is slightly larger near the
center of the thickness, probably due to shear-induced migration occurring when the channel
was being filled. The suspension might enter the channel in a well-mixed state, but this
view was obtained at a distance of ≈ 70mm from the inlet, long enough to induce a partial
migration with 𝜙bulk = 0.40, as shown in Fig. 1.13. The migration process continues as the
suspensions oscillates, increasing the particle concentration in the center line, as shown the



A. A. García − Doctoral thesis − December 15, 2025 Page 62 of 156

second image (𝑡 = 14 𝑇 ), taken when the maximum concentration there was reached.
Around this time, this central band of high particle concentration began to destabilize,

eventually forming the wave-like pattern displayed in the third image (𝑡 = 29 𝑇 ). During this
process, the particles move in the 𝑦 direction, transverse the main flow along the 𝑥 direction,
but, as we will see in Chapter 4, this process is more complex since the whole pattern is
being convected longitudinally by the oscillatory main flow. Afterward, the pattern becomes
less clear, as shown in the fourth image (𝑡 = 41 𝑇 ) but, then, it remains without significant
changes until the experiment is finished.

Figure 3.2a displays the local volume fraction 𝜙(𝑦, 𝑡) as a function of 𝑦, for times 𝑡 cor-
responding to the first three images. The initial migration (from 𝑡/𝑇 = 0 to 14) increases 𝜙
near the center (𝑦 = 0) and decreases it near the walls (𝑦 = ±1). With the instability onset,
the wave-like pattern starts to form and the particles move out of the center line, resulting in
a profile at 𝑡/𝑇 = 29 that looks similar to the initial one, although we know from the images
that the configuration is different.
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Figure 3.2: a) Local particle volume fraction 𝜙 across the channel thickness (𝑦 direction). Walls at
𝑦/𝑏 = ±1. b) Transverse velocity in the center of the thickness 𝑉𝑦,cen as a function of the coordinate
𝑥, normalized by 𝑉s = 1.15mm/s. Each plot has three curves corresponding to the times of the first
three images of Fig. 3.1.

During the unstable flow, the velocity field presents variations along both 𝑥 and 𝑦. The
temporal variations of the transverse velocity component 𝑉𝑦(𝑥, 𝑦, 𝑡) are especially useful to
track the development of the instability because the magnitude of its values increases sharply
after the instability onset. Figure 3.2b shows 𝑉𝑦,cen(𝑥, 𝑡) = 𝑉𝑦(𝑥, 0, 𝑡) along 𝑥 for the same three
times 𝑡 as plot (a). The velocities are normalized by 𝑉s. During the migration (0 ≤ 𝑡/𝑇 ≤ 14),
𝑉𝑦,cen does not have any discernible structure and its values are small (compared with later
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times). At 𝑡/𝑇 = 29, we see that 𝑉𝑦,cen has become periodic along 𝑥 with a period of ≈ 5 𝑏
like the particle distribution observed in the image of Fig. 3.1c.

The curves shown here correspond to times shortly before a flow reversal. After the
reversal occurs, both velocity components 𝑉𝑥 and 𝑉𝑦 change sign. For this reason, the pattern
formed by the particles is not simply the result of them moving steadily with the transverse
velocity shown here, instead, it must be an irreversible consequence of each oscillation. We
will continue this analysis in Chapter 4.

The temporal variations described above can be tracked for each oscillation using Fig. 3.3.
There, we see two curves plotted versus the number of oscillations 𝑡/𝑇 and the accumulated
strain ̄𝛾: the volume fraction in the center of the thickness, 𝜙cen(𝑡) = 𝜙(0, 𝑡), and the root
mean square (rms) of the 𝑉𝑦,cen(𝑥, 𝑡):

𝑉𝑦,cen,rms(𝑡) = √ 1
𝑥2 − 𝑥1

∫
𝑥2

𝑥1

𝑉 2𝑦,cen(𝑥, 𝑡) d𝑥, (3.1)

with 𝑥2 = −𝑥1 ≈ 9 𝑏 in this example. When the migration is occurring (0 ≤ 𝑡/𝑇 ≤ 14),
𝜙cen (green line) increases from ≈ 0.46 to ≈ 0.53, while 𝑉𝑦,cen,rms remains approximately
constant at a initial value of ≈ 0.005 𝑉s. Then, the effects of the instability become clear:
𝑉𝑦,cen,rms increases until it reaches at 𝑡/𝑇 ≈ 30 a maximum value of ≈ 0.03 𝑉s and, almost
simultaneously, 𝜙cen decreases until it reaches a value ≈ 0.45. Afterward, both curves remain
almost constant.

During the analysis of our experiments, we used curves like the above ones to determine
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Figure 3.3: Temporal evolution of 𝜙cen (volume fraction 𝜙 at 𝑦 = 0, left axis) and 𝑉𝑦,cen,rms (root
mean square of 𝑉𝑦,cen, right axis) as functions of the number of oscillations 𝑡/𝑇 (bottom axis) and the
accumulated strain ̄𝛾 = 𝑡𝑉s/𝑏 (top axis). Same experiment as Fig. 3.1.
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the time 𝑡onset after which the effects of the instability become important (here 𝑡onset/𝑇 ≈ 14).
In the remainder of this chapter, we study the flow and particle distributions found just
before this onset time, while a complete characterization of the instability will be deferred to
Chapter 4.

3.2. Quasi-steady flow before the instability

Before the onset of the unstable behavior, the flow and particle distribution are roughly
invariant along the 𝑥 direction. As such, we focus on the variations across the gap (𝑦 direction)
in this section, and present profiles of the volume fraction 𝜙(𝑦, 𝑡), longitudinal velocity 𝑉𝑥(𝑦, 𝑡)
and velocity fluctuations 𝑇𝑖𝑗(𝑦, 𝑡) calculated using the particle positions and velocities as
described in Sec. 2.7.

During our experiments the flow direction is periodically reversed, producing transient
variations in the flow after each reversal. These variations are a consequence of the mi-
crostructure reorganization (see Sec. 1.5.2) and will be discussed in more detail in Secs. 3.3
and 3.5. In the following subsections, we will show results averaged during the quasi-steady
state (qss) reached after a strain Δ ̄𝛾qss is accumulated since the last reversal.

In order to determine Δ ̄𝛾qss, we look at the instantaneous longitudinal velocity profiles
𝑉𝑥(𝑦, 𝑡) and calculate the ratio between the velocity in the center 𝑉cen(𝑡) = 𝑉𝑥(0, 𝑡) and the
average over 𝑦, 𝑉avg(𝑡). For very dilute suspensions (𝜙 < 0.01), with the particles acting as
tracers, we see the expected parabolic velocity profiles where 𝑉cen/𝑉avg ≈ 1.5, as displayed
in Fig. 3.4a. As the average volume fraction 𝜙bulk increases, we observe the blunting of the
velocity profiles described in Sec. 1.6.2, and a decrease of the quotient 𝑉cen/𝑉avg. Furthermore,
after each flow reversal, there is a transient rise of this quotient as a result of inhomogeneous
variations of the suspension viscosity (see Sec. 3.3), with an amplitude that increases with
𝜙bulk. Figure 3.4b illustrates both effects during one oscillation of representative experiments.
From these plots, we conclude that, after a strain Δ ̄𝛾qss = 5 (see the top axis), the velocity
profiles no longer present significant effects from the reversal and we can consider them as
representative of a quasi-steady state.

There are also the long-term variations induced by the particle migration and the instabil-
ity mentioned in the previous section. The migration has been the topic of previous studies,
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Figure 3.4: a) Average and central longitudinal velocity during four oscillations of a calibration
experiment with 𝜙bulk < 0.01. b) Quotient between central and average velocities during one oscillation
at the beginning of experiments with different volume fractions (increasing from top to bottom). For
both graphs: 2𝑎 ≈ 40 µm, 2𝑏 = 1.0mm, 𝑉s = 1.16mm/s, 𝑇 = 16 s, ̄𝛾0 = 𝑇 𝑉s/(2𝑏) = 18.6.

and the instability will be studied in detail in the following chapters. Our objective here is
to characterize the base state just before the onset of the instability occurring after 𝑡onset/𝑇
oscillations. For the present analysis, we define 𝑡onset/𝑇 as the last cycle when 𝑉𝑦,cen,rms was
below 10% between its initial and maximum value.

Following the time-averaging procedures explained in Sec. 2.7.3, from each experiment, we
take the six half oscillations before 𝑡onset/𝑇 and, from each of them, we take the quasi-steady
part after a time Δ𝑡qss. Finally, we make a temporal average leaving only the dependence
on 𝑦. For 𝑉𝑥, which alternates signs, we invert the sign every two half oscillations before
the averaging. Finally, the profiles from different experiments with the same parameters are
averaged together (between two to four experiments in each case).

3.2.1. Longitudinal velocity

Figure 3.5 shows the longitudinal velocity profiles 𝑉𝑥(𝑦) corresponding to the quasi-steady
state observed before the onset of the instability. Each profile is normalized by its average
across 𝑦, 𝑉avg.

On plot (a), the bulk volume fraction 𝜙bulk varies while particle and channel sizes (2𝑎 ≈
40µm, 2𝑏 = 1.0mm) remain fixed. We observe that the profiles become progressively more
blunted as 𝜙bulk increases, like those of Rashedi et al. (2020) shown in Fig. 1.12. This is a
consequence of the shear-induced migration of particles toward the center (𝑦 = 0).

On plot (b), the volume fraction is fixed at 𝜙bulk = 0.4 and we compare experiments with
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Figure 3.5: Longitudinal velocity profiles for experiments with different volume fractions (a) and
geometric parameters (b). Oscillation amplitude ̄𝛾0 ≈ 18, no significant differences for other values.

different particles and channel sizes. The profiles are similar, with the violet curve being
slightly blunter, but it is unclear whether this is significant.

It is important to note that each profile is normalized by the corresponding measured
average velocity 𝑉avg and not by a fixed value determined from the parameters. We have to
do this to make them comparable, since variations of up to 5% were observed between the
average velocities of different experiments, even consecutive ones. These discrepancies may
result from variations of the initial conditions, particularly, the particle distribution inside
the channel.

3.2.2. Volume fraction

Figure 3.6 shows the particle volume fraction profiles corresponding to the previous velocity
profiles. In all cases, the values increase from the wall (𝑦/𝑏 = 1) to the center (𝑦/𝑏 = 0). This
trend is consistent with the shear-induced migration and the curves from Rashedi et al. (2020)
shown in Fig. 1.12a, although the latter presents sharper variations of 𝜙 around 𝑦/𝑏 ≈ 0.1.
Since these profiles occurs shortly before the onset of the instability, one possibility is that
the mechanism responsible for it is partially counteracting the particle migration. In the case
of the 40µm particles, limitations in the visualization technique may also play a role since
those particles can overlap visually due to their small size in relation to the thickness of the
laser plane (see Sec. 2.5.1 and 2.7.1).
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Figure 3.6: Particle volume fraction profiles for experiments with different volume fractions (a) and
geometric parameters (b). Same experiments as Fig. 3.5.

3.2.3. Transverse velocity fluctuations

Although the average transverse velocities across the gap are negligible, |𝑉𝑦(𝑦)/𝑉avg| < 0.002,
interactions between particles can result in non-zero velocity fluctuations as a consequence
of their finite size. This was illustrated in Sec. 1.4.2 for the case of two particles approaching
with a local shear rate ̇𝛾: if their transverse separation is small enough (Δ𝑦 ≲ 2𝑎), the pair
will have to separate transiently a distance of the order of 𝑎. Then, we may expect transverse
velocity fluctuations to be proportional to 𝑎 ̇𝛾 and increase with 𝜙.

Figure 3.7 shows the transverse velocity fluctuations profile 𝑇 1/2
𝑦𝑦 (𝑦) normalized by 𝑉avg𝑎/𝑏.

As expected, the fluctuations grow with 𝜙 and ̇𝛾 = |𝜕𝑉𝑥/𝜕𝑦| (see inset), with exceptions in
two extreme regions. Near the wall (𝑦/𝑏 ≳ 0.9), its influence reduces the fluctuations, and
near the center (𝑦/𝑏 ≲ 0.25), the shear rate is almost zero but finite fluctuations are observed.
In plot (a), we see that simulations of steady channel flow done by Yeo and Maxey (2011)
(black lines) have characteristics similar to our measurements. In particular, they predict
non-zero values near the center (𝑦 = 0), although smaller than ours. It is possible that
some of the fluctuations observed in our measurements come from small errors in the particle
tracking process, affecting more severely regions of higher particle concentration.

Plot (b) displays results for experiments with different particle diameters 2𝑎 and channel
thicknesses 2𝑏. The curves for experiments with 𝑏/𝑎 ≈ 25 (violet and yellow curves) are
similar, but the experiments with 𝑏/𝑎 ≈ 50 (orange) have significantly larger values than the
other two, using our chosen normalization. These specific experiments with smaller beads
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Figure 3.7: Particle velocity fluctuation profiles for experiments with different volume fractions (a)
and geometric parameters (b). The black curves in (a) were taken from Yeo and Maxey (2011). Inset
in (a): local shear rate across the gap for the same experiments. Same experiments as Fig. 3.5.

(2𝑎 = 40 µm) used a larger proportion of dyed particles (2.5% vs 1%), possibly increasing the
overlap between them and the spurious fluctuations.

3.3. Macroscopic variations after a flow reversal

In Fig. 3.4b, we saw that the ratio 𝑉cen/𝑉avg increased after a flow reversal and, then, relaxed
to a steady value. In this section, and onward, we will consider variations as a function
of the characteristic strain Δ ̄𝛾 = Δ𝑡𝑉s/𝑏 accumulated after a flow reversal, where Δ𝑡 is
the time elapsed since the reversal. To continue our description, we show in Fig. 3.8 the
instantaneous profiles for one set of parameters1 at two different times: when 𝑉cen/𝑉avg is
maximum (Δ ̄𝛾 = 0.9 in this case), and just before the next reversal (Δ ̄𝛾 ≈ ̄𝛾0), when a quasi-
steady state (qss) has been reached. Like in the previous section, these results come from
averaging several cycles before the onset of the instability, but using instead the ensemble
averages described in Sec. 2.7.3 to study the transient changes between reversals.

Shortly after reversal, the profiles of the longitudinal velocity 𝑉𝑥 (plot a) and transverse
fluctuations 𝑇 1/2

𝑦𝑦 (plot c) resemble those corresponding to a smaller bulk volume fraction
𝜙bulk, but the volume fraction profile (plot b) itself remains unchanged. Moreover, these
effects become more noticeable as 𝜙bulk increases, like it was shown in Fig. 3.4b, suggesting

1With other parameters (𝜙bulk, 𝑎, 𝑏) we see qualitatively similar results, but the ones chosen here correspond
to experiments where a larger number of particles are tracked at each instant, and thus provide better statistical
quality for the analysis of transient changes.
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Figure 3.8: Profiles across the channel gap shortly after a flow reversal (solid blue line) and just
before the next one (dashed red line) for the longitudinal velocity (a), the shear rate (a inset), volume
fraction (b), and transverse fluctuations (c). In (b), both curves overlap almost perfectly. Parameters:
𝜙bulk = 0.4, 2𝑎 ≈ 85 µm, 2𝑏 = 2.1mm, 𝑉s = 1.15mm/s, ̄𝛾0 = 𝑇 𝑉s/(2𝑏) = 13.3. Average of three
experiments.

as an explanation changes in the average interactions between particles.

Ruling out inertial effects (see Sec. 5.4 for a justification), and knowing that the carrier
fluid is Newtonian and the particles are rigid (then, there are no additional time scales from
those), the only simple explanation for the above observations is a transient change in the
microstructure. In Sec. 1.5, we have shown that sphere suspensions get organized into an
asymmetric microstructure under shear flows as a consequence of solid contacts between the
particles, and that these contacts account for a large fraction of the suspensions stresses and,
particularly, of its viscosity. When the shearing direction is reversed, the microstructure has
to reach a new equilibrium and, transiently, the viscosity decreases due to the loss of most
contacts between particles (Blanc, Peters, and Lemaire 2011).

Modeling the suspension as a continuous fluid, we can use the classical relation for the
shear stress in a laminar channel flow:

𝜂s(𝑦, 𝑡) ̇𝛾(𝑦, 𝑡) = 𝜏w(𝑡) 𝑦/𝑏, (3.2)

where 𝜂s is the suspension viscosity, 𝜏w is the shear stress on the wall (𝑦 = 𝑏) which is pro-
portional to the pressure gradient along the flow direction (see Eq. 1.24). In our experiments,
the flow rate is constant between reversals and 𝜏w adjust itself. In uniform shear flows (i.e.
with ̇𝛾 and 𝜙 independent of 𝑦), 𝜂s decreases shortly after a flow reversal in a proportion
that increases with the volume fraction 𝜙 (see Sec. 1.5.2). Extrapolating this result to our
case, we can expect a decrease of the suspension viscosity all across the gap, but in a larger
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proportion toward the center (𝑦 = 0), where 𝜙 is larger. This makes the viscosity across the
gap less inhomogeneous and, in turn, the velocity and shear rate profiles approach (but do
not become) those of a uniform Newtonian fluid. This is indeed what we see in Fig. 3.8a.

Transient variations of the viscosity and the shear rate with the strain after a

reversal

In a Stokesian (Re = 0) non-Brownian suspension, all variations occur as a result of the
cumulative effect of irreversible interactions (e.g. contacts) which happen as a strain 𝛾 is
induced in the suspension. In our case, this strain varies across the gap and we may estimate
its local value as

𝛾(𝑦,Δ𝑡) = ∫
Δ𝑡

0
̇𝛾(𝑦, 𝑡′) d𝑡′. (3.3)

Here, 𝑡′ = 0 corresponds to the reversal and 𝛾 measures the strain imposed locally on the
suspension after a time Δ𝑡 since the reversal. In what follows, we will compare a local
estimation of the viscosity with previous measurements obtained in uniform conditions in
order to determine if the latter explains the temporal variations of the velocity profile shown
in Fig. 3.8a. In Sec. 3.5, we will continue this discussion with the aid of measurements related
to the microstructure.

Using Eq. (3.2), we may estimate the variations of the local viscosity 𝜂s(𝑦, 𝑡) even though
𝜏w(𝑡) is not known in our experiments. From Eq. (3.3), it is clear that a given value of 𝛾 is
reached much faster near the wall (𝑦 = 𝑏), where the shear rate is largest (see Fig. 3.8 inset),
than near the center (𝑦 = 0). Then, assuming that the variations of 𝜏w are driven mainly by
the local strain (remember that 𝜏w is the shear stress on the wall), we may consider that 𝜏w(𝑡)
reaches a constant value 𝜏qssw a relatively short time after the reversal, when the viscosity in
regions nearer to the center (𝑦 = 0) is still evolving at much slower rate (again, we assume
here that the main driver of these changes is the local strain 𝛾). With this in mind, we divide
Eq. (3.2) term-by-term by its qss values and obtain, after a rearrangement,

𝜂s(𝑦, 𝑡)
𝜂qsss (𝑦) = 𝜏w(𝑡)

𝜏qssw

̇𝛾qss(𝑦)
̇𝛾(𝑦, 𝑡) ≈ ̇𝛾qss(𝑦)

̇𝛾(𝑦, 𝑡) . (3.4)

In Fig. 3.9, we show ̇𝛾qss/ ̇𝛾 for different positions 𝑦 across the gap as functions of both the



A. A. García − Doctoral thesis − December 15, 2025 Page 71 of 156

local strain 𝛾 (plot a) and the characteristic strain Δ ̄𝛾 = Δ𝑡𝑉s/𝑏 (plot b), which we may call
also the global strain. Plot (a) is reminiscent of the measurements of 𝜂s(𝛾) shown in Fig. 1.8a:
in each curve, there is a discontinuous decrease at 𝛾 = 0, followed by a further decrease until
a minimum is reached and, then, an asymptotic relaxation toward a steady value. Each curve
here corresponds to different positions 𝑦, but also to different local volume fractions 𝜙(𝑦) (see
the profiles in Fig. 3.8b). Then, further similarities between ̇𝛾qss/ ̇𝛾 and 𝜂s can be seen: the
minima of both variables decrease relative to the corresponding steady value as 𝜙 increases,
while the strain 𝛾 needed to reach these minima also decreases with 𝜙.
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Figure 3.9: Variations of ̇𝛾qss/ ̇𝛾 for different positions 𝑦 across the gap as functions of the local
strain 𝛾 (a) and of the global strain Δ ̄𝛾 (b) after a flow reversal at zero strain. Same experiments as
in Fig. 3.8.

In Fig. 3.10a, we show the fractions 1 − min( ̇𝛾qss/ ̇𝛾) (from our measurements) and 1 −
min(𝜂s/𝜂ss𝑠 ) (from previous works, 𝜂ss𝑠 is the steady-state value equivalent to our qss value) as
functions of the local volume fraction 𝜙. As the volume fraction increases, a larger fraction
of the steady viscosity is lost shorty after a flow reversal. This is consequence of the loss of
particle contacts and the fact that the largest contribution to the steady viscosity comes from
these contacts (Peters et al. 2016). The trend in our estimation (red symbols) is similar to
that of the measurements in uniform shear (black symbols), but our values vary more sharply
with 𝜙, possibly due to the unaccounted for influence of the variations of 𝜏𝑤.

In Fig. 3.10b, we show the local strains 𝛾min and 𝛾0.5 need to reach, respectively, the
minimum viscosity and the average between this value and the steady one. In all cases, the
characteristic strains decrease with the volume fraction 𝜙, with a good agreement between
our estimation using the shear rate (red symbols) and previous measurements in uniform
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Figure 3.10: a) Fraction of the steady viscosity lost shortly after a reversal as a function of the
volume fraction 𝜙. b) Strain required to reach the minimum and a 50% relaxation in the viscosity
after reversal. In both plots, the red symbols correspond to our estimation using the curves in Fig. 3.9a,
and the black symbols reproduce values obtained in experiments by Blanc, Peters, and Lemaire (2011)
and in simulations by Peters et al. (2016).

shear flows (black symbols). From the above observation, we can conclude that the local
variations of the viscosity are mainly driven by the local strain felt by the suspension. Then,
a quasi-steady state may be recovered locally after a strain of the order of 𝛾0.5 is accumulated
at a given position 𝑦 across the gap, with 𝛾0.5 decreasing with 𝜙(𝑦), that is, toward the center
at 𝑦 = 0.

The previous observation may be misinterpreted as suggesting that the qss is recovered
sooner near 𝑦 = 0, but this not the case: in Fig. 3.9b, we see clearly that ̇𝛾(𝑦, 𝑡) becomes
≈ ̇𝛾qss(𝑦) for smaller global strains Δ ̄𝛾 (i.e. times) as 𝑦 increases (toward the wall). A possible
explanation is the fact that, although both the local shear rate ̇𝛾 and the local value of 𝛾0.5
increase with 𝑦, the first presents a larger relative increase and, as such, the suspension is
able to reach the strain needed to reach its qss faster near the walls, even though this strain
is also larger there.

Finally, comparing the curves for variations near the center (𝑦 ≤ 0.3) to those in the
middle region (0.3 ≤ 𝑦 ≤ 0.6) in Fig. 3.9b, we could infer that the relaxation process does not
reach its steady value before the next reversal in the first case. Although this may be true,
bear in mind that the values of ̇𝛾 near the center are almost zero (see inset of Fig. 3.8a) and
that the influence of their variations on the flow should be minimal.
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3.4. Microstructure in the quasi-steady state

The results presented up to this point suggest that shearing a suspension induces an organi-
zation of the particles that depends on the flow direction, and occurs at a scale small enough
so that the local volume fraction does not change. Such an organization has been observed
and extensively studied in the suspension literature under the name of microstructure, mostly
for steady uniform shear flows (see Sec. 1.5 for a summary).

In this section, we will characterize the microstructure in the flow-gradient plane (𝑥 − 𝑦)
by the means of the bidimensional pair distribution function (pdf) 𝑔(𝑟𝑥, 𝑟𝑦), calculated from
the experimental data as explained in Sec. 2.7.2. The function 𝑔 is proportional to the
probability density of finding a particle at a position (𝑥 + 𝑟𝑥, 𝑦 + 𝑟𝑦) given the presence of
another particle at (𝑥, 𝑦), and it is normalized such that a value of one everywhere would result
for a statistically homogeneous distribution of particles. This removes the direct influence of
the local volume fraction (otherwise a larger 𝜙 implies a larger probability), and will allow
us to concentrate in the spatial organization. The calculation is performed independently in
twelve non-overlapping strips between 𝑦 = 0 and 𝑦 = 𝑏, each one small enough so that 𝜙 and
̇𝛾 do not have large variations, but large enough to accumulate sufficient statistics to obtain

clean plots.2

3.4.1. Pair distribution in the flow-gradient plane

Figure 3.11 shows pdf’s in the quasi-steady state, that is, long enough after a reversal and just
before the next one and, globally, before onset of the instability. Plots (b-h) corresponds to
different strips across the gap, going from the center (plot b) to the wall (plot h). Calculations
were performed so that the local shear rate is always positive, that is, on the top half, particles
are going from left to right with respect to a particle at the center, and the opposite is true
on the bottom half, as illustrated in plot (a).

First of all, we see that large pair probabilities are clustered in a ring with 𝑟 = √𝑟2𝑥 + 𝑟2𝑦 ≈
2 (colors red and black), corresponding to pairs in contact or near contact. This can be

2The pair distribution was calculated only on the top half of the channel (𝑦 > 0) due to limitations of the
visualization technique: the laser light is distorted as it goes from top to bottom due to imperfections of the
index matching, especially after it crosses the central band of high particle concentration. This can be seen as
a vertical banding in images like those shown in Fig. 3.1.
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Figure 3.11: a) Diagram showing a pair of particles with the coordinates, quadrants and shear
directions. b-h) Pair distribution functions calculated at different positions across the gap, during
the quasi-steady state, and normalized such that a uniform distribution would have a unit value
everywhere. Parameters: 𝜙bulk = 0.4, 2𝑎 ≈ 85 µm, 2𝑏 = 2.1mm, 𝑉s = 1.15mm/s, ̄𝛾0 = 𝑇 𝑉s/(2𝑏) =
13.3. Average of six experiments.

understood as a consequence of the lubrication interactions (see Sec. 1.4.1) which tend to
make particles stick together. A partial exception is the strip on the wall (plot h) where the
probability for 𝑟𝑦/𝑎 > 1 is negligible and for 𝑟𝑦 = 0 is increased. The first difference is due to
the wall confinement and the fact that the strip has a width of approximately one particle.
The second may be a consequence of a tendency of the particles to align on the walls and
form layers, as shown in many other studies (Yeo and Maxey 2011; d’Ambrosio, Blanc, and
Lemaire 2023).

Another important characteristic is the fore-aft asymmetry (i.e. with respect to inversion
in the flow direction, 𝑟𝑥) seen in most strips, except in the center (plot b). In plots (d-g), we
observe two regions relatively depleted of particles in the extensional quadrants (𝑟𝑥𝑟𝑦 > 0)
where the probability of pairs in near contact (red ring, 𝑟 ≈ 2) is significantly lower (green-
blue colors) than in the rest of the ring (red color). As explained in Sec. 1.5.1, this is a
consequence of irreversible interactions between the particles, most commonly, through solid
contacts. The angular symmetry in the center (plot b) may occur because the accumulated
shear between reversals is not large enough (𝛾 < 0.7) to induce the formation of a fore-aft
asymmetric structure. Observe that, in plot (c), corresponding to a strip located above the
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one from plot (b), we see both behaviors: on the bottom half (𝑟𝑦 < 0) the distribution is
almost independent of the angle, while on the top, the depletion is present. In this case, a
large inhomogeneity of both the shear rate and the volume fraction in the region covered by
the strip may be a relevant factor. Also, the other intermediate strips (plots d-g) have slight
top-bottom asymmetries which are possibly related to the volume fraction gradient as will
be discussed later in this section.

3.4.2. Radial pair distribution

Figure 3.12a shows the radial pair distributions 𝑔(𝑟) for different strips. The curves for all
the strips have a peak and global maximum at 𝑟peak/𝑎 ≈ 1.9, with widths at half-height
Δ𝑟peak/𝑎 ≈ 0.3. As the concentration increases (toward 𝑦 = 0), the height of the peak (i.e.
the fraction of pairs nearly in contact) increases, while a second peak at 𝑟/𝑎 ≈ 3.6 becomes
more pronounced and a depletion [𝑔(𝑟) < 1] becomes apparent in between. Figure 3.12b
shows the magnitudes of the peaks versus the local volume fraction of the corresponding
strip; a linear trend can be observed. It is important to note that 𝑔 is already normalized by
the local particle concentration 𝜙, so, this variation of the peak value cannot be explained
simply by the change of 𝜙 between the strips but, instead, it indicates differences in the
spatial distribution of the pairs.
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Figure 3.12: a) Radial pair distribution function calculated at different positions across the gap,
during the quasi-steady state. b) Maximum value 𝑔(𝑟max) as a function of the local volume fraction
(i.e. position across the gap). Same experiments as in Fig. 3.11.
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3.4.3. Angular pair distribution

Now, we will restrict our analysis to pairs in near contact (|𝑟 − 𝑟peak| < 1
2Δ𝑟peak), and look

at angular pair distributions 𝑔(𝜃) since those contain the most important information about
the microstructure. Figure 3.13 shows 𝑔(𝜃) for different strips across the gap. In order to
account for possible effects of the gradients, we display separately the pair probabilities above
(𝑟𝑦 > 0, 𝜃 > 0, blue curves) and below (𝑟𝑦 < 0, 𝜃 < 0, red curves) the reference particle at the
origin. For comparison, we include measurements performed by Blanc, Lemaire, et al. (2013)
in simple shear flows (black dashed lines). In general, all the curves display a dip around
𝜃 = 0.2 𝜋, corresponding to the depletion of pairs in the extensional quadrants observed in
the pdf’s of Fig. 3.11. Also, a secondary and shallower dip can be seen around 𝜃 = 0.75 𝜋.
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Figure 3.13: Angular distribution 𝑔(𝜃) of pairs nearly in contact for three different strips. The
blue and red curves correspond respectively to the probabilities above (𝑟𝑦 > 0, 0 < 𝜃 < 𝜋) and
below (𝑟𝑦 < 0, −𝜋 < 𝜃 < 0) the reference particle, with the later curve displaced by 𝜋 to allow
for comparisons. Same experiments as in Fig. 3.11. The black dashed lines display measurements
performed in simple shear flows by Blanc, Lemaire, et al. (2013).

In regions far from the center and the walls (0.2 ≲ 𝑦/𝑏 ≲ 0.8), of which plots (b-c) are
representative examples, our measurements are in good agreement with those of simple-shear
experiments (black dashed curves). Going into the details, the probability of pairs below
(red curves) tends to be always higher than for pairs above (blue curves), specially near
𝜃 = 0.5 𝜋 on the plot, that is, immediately above and below the reference particle located
at the origin in Fig. 3.11. Since the particle concentration grows toward the center (below),
one simple explanation is that the pair probability is modulated by the gradient of 𝜙. A
similar observation is made by Yeo and Maxey (2011) in relation to their pdf’s obtained in
simulations of channel flow.

Regarding plot (a), it corresponds to the pdf shown in Fig. 3.11c, for which the fore-aft
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asymmetry is clear only in the top part (𝑟𝑦 > 0) while, below (𝑟𝑦 < 0), it is approximately
symmetric in the angular direction (𝜃). In Fig. 3.13a, we observe that 𝑔(𝜃) displays dips
at 𝜃 ≈ 0.2 𝜋 for both curves (above and below the reference particle), but its minimum
value is much smaller for the blue curve (above), which is also more similar to uniform-shear
measurements (black dashed).

In Fig. 3.14a, a comparison between curves 𝑔(𝜃) for multiple strips can be seen. The values
tend to increase at almost all angles as the volume fraction 𝜙 increases (and 𝑦/𝑏 decreases),
in agreement with our observations for the peak of 𝑔(𝑟) shown in Fig. 3.12. The change is
particularly large in the fore (𝜃 = 0) and aft (𝜃 = ±𝜋) positions. Furthermore, the positions
of the dips near 𝜃 = 0.2 𝜋 and −0.8 𝜋 also change with 𝜙. We estimate the angular position
of the dip on the right (𝜃 > 0) by a parabolic fit around the corresponding local minima of in
each curve 𝑔(𝜃). In Fig. 3.14b, the resulting angles are plotted versus the local volume fraction
(red dots), along with the results of Blanc, Lemaire, et al. (2013) for uniform volume fractions
and shear rates (black circles). Again, both sets of results are in good agreement, within the
experimental uncertainties. The roughly linear increase of 𝜃min with 𝜙 can be interpreted as
a sort of rotation of the pdf’s that occurs as the irreversible interactions responsible for the
fore-aft asymmetry (and the dip) become more significant (Drazer et al. 2002).
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Figure 3.14: a) Angular distribution of pairs in near contact at different positions across the gap,
during the quasi-steady state. b) Angle of minimum probability 𝜃min as a function of 𝜙. Black symbols
correspond to uniform shear measurements from the literature (Blanc, Lemaire, et al. 2013). Same
experiments as in Fig. 3.11.

So far, we can conclude that away from the walls and the center, the observed quasi-
steady pair distributions can be accounted almost exclusively by the local volume fraction,
with a small effect from its gradient. In Sec. 1.6.2, we have seen that the equilibrium reached
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following the shear-induced migration results in a volume fraction 𝜙 increasing from the walls
at 𝑦 = ±𝑏 to the center at 𝑦 = 0, and a shear rate ̇𝛾 with the opposite trend. At the scale of
one particle, we observe that it is more probable to find a second particle nearly in contact
toward the center (𝑟𝑦 < 0) than toward the wall (𝑟𝑦 > 0), in qualitative agreement with the
gradient of 𝜙. On the other hand, the gradient of ̇𝛾 results in particles that move, on average,
faster above (𝑟𝑦 > 0) than below (𝑟𝑦 < 0) the reference particle, as we show in the following
section.

3.4.4. Pair relative velocity distribution

The information presented up to this point comes from counting the occurrence of pairs with
relative position vectors (𝑟𝑥, 𝑟𝑦) within specific ranges of values (i.e. bins), but we can also
compute statistics using the pair relative velocity (see Sec. 2.7.2). Figure. 3.15a shows the
average pair relative velocity (𝛿𝑣𝑥, 𝛿𝑣𝑦) in the space (𝑟𝑥, 𝑟𝑦), for one example strip (position
across the gap), while plots (b) and (c) show the angular dependence of both components for
pairs in near contact (𝑟 ≈ 2𝑎). Other strips are similar, except those on the extremes.

Broadly, the particles surrounding the reference one follow the imposed shear: they move
from left to right in the top, and opposite in bottom. The magnitude of the longitudinal
component 𝛿𝑣𝑥 is larger above than below (see plot b), in agreement with the macroscopic
shear rate gradient which increases toward the wall (above). Pairs with 𝑟 ≈ 2𝑎 will interact
strongly due to geometrical restrictions (i.e. a collision) and can have transverse velocities
𝛿𝑣𝑦 of a magnitude comparable to 𝛿𝑣𝑥 (see plot c) while, outside this region and far enough
from 𝑟𝑦 = 0, 𝛿𝑣𝑦 is almost negligible (horizontal arrows in plot a).

In general, the velocity arrows in plot (a) suggest trajectories like those shown in Sec. 1.4.2:
particles on the top half come from the left, move up and, then, down to pass the reference
particle in the center, while a similar but horizontally-mirrored situation occurs on the bot-
tom. There seems to be an interesting exception: particles coming from the left (right) very
near the 𝑟𝑦 = 0 axis would seem to go down (up), and then back to the left (right). See also
that the sign changes in plot (c) near 𝜃 ≈ 0.15 𝜋 and 𝜃 ≈ 0.90 𝜋. Such trajectories are not
predicted for pairs of particles interacting, so it is possible that this is a result of three or
more nearby particles interacting simultaneously, a situation that may be very common at
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Figure 3.15: a) Particle velocity field relative to a reference particle in the center in one strip across
the gap. The arrows indicate the directions and their lengths, the magnitudes. Red and blue colors
indicate the sign of the transverse component, up and down, respectively. b-c) Angular dependence of
both velocity components for particles in near contact (𝑟 ≈ 2𝑎). Shown separately are the parts of the
curves that correspond to above the reference particle (𝑟𝑦 > 0, 0 < 𝜃 < 𝜋, blue) and below (𝑟𝑦 < 0,
−𝜋 < 𝜃 < 0, red), with the latter shifted by 𝜋 to make the comparison between both easier.

high particle concentrations like the ones we are studying.

3.5. Transient variations of the microstructure after a flow reversal

After seeing the fore-aft asymmetry in the pair distribution functions shown in Figs. 3.11,
it is clear that changing the shear direction will prompt a reorganization of the particles to
reach a distribution matching the new direction. Such a reorganization has been previously
characterized by its end result (the steady microstructure) or from the variations in some
stress tensor components and the viscosity (see Sec. 1.5.2). Here, we will show explicitly the
variations of the pair distribution after a flow reversal and across the channel thickness.

3.5.1. Pair distribution in the flow-gradient plane

Figure 3.16a shows a sequence of pair distribution functions (pdf) that we obtained before
(𝛾 < 0) and after (𝛾 > 0) a flow reversal, inside one example strip. Each plot results
from averages over shorter times than the ones shown in Fig. 3.11, making them nearly
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instantaneous, but with a lower spatial resolution and noisier. The first one (𝛾 = −0.05) shows
the state shortly before the reversal and is a horizontally mirrored version of the map show
in Fig. 3.11e for the same strip, since here the shearing is occurring in the opposite direction.
The next five plots show the situation at progressively larger accumulated strains 𝛾 after the
reversal. Interestingly, the first map after reversal (𝛾 = 0.30) does not present significant
differences. It is only after enough shearing (𝛾 ≥ 0.57) that the expected reorganization
becomes apparent, eventually reaching a mirrored version of the first pdf.
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Figure 3.16: Pair distribution functions at different local strains 𝛾 before and after a flow reversal
at 𝛾 = 0. Same experiments as Fig. 3.11.

3.5.2. Angular pair distribution

It is clear from the previous maps that the most important changes occur in the angular
distribution of pairs in near contact (red ring close to 𝑟 ≈ 2). Figure 3.17(a-c) shows angular
pair distributions for three strips and at three different moments: when the reversal occurs,
midway during the reorganization, and after it became roughly steady. Here, the mirroring
in the 𝑟𝑥 direction seen in Fig. 3.16 corresponds to transformation into a 𝜋-complementary
distribution, that is, depletions at 𝜃 ≈ 0.8 𝜋 and 𝜃 ≈ −0.2 𝜋 change to depletions at 𝜃 ≈ 0.2 𝜋
and 𝜃 ≈ −0.8 𝜋, respectively. Notice that midway in this process (middle plot of each row),
both sets of depletions are present and the distribution is roughly symmetric with respect to
rotations by 𝜋/2.

In order to capture a more detailed picture of the reorganization process, we show in
Fig. 3.17(d-f) color maps representing the evolution of 𝑔(𝜃) with the accumulated shear 𝛾
(horizontal axis). The same color scale as for the pdf’s is used here, where blue represents
a small probability and red, a high one, with green and yellow for intermediate values. Like
in Fig. 3.16, it is clear that, for small enough deformations, the distributions do not change
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Figure 3.17: a-c) Angular pair distribution for particle pairs in near contact (𝑟 ≈ 2𝑎) at three
different times (columns) before and after a flow reversal, and in three different strips across the
channel gap (rows). d-f) Color maps showing the angular pair distribution 𝑔(𝜃) as a function of the
accumulated shear 𝛾 (horizontal axis). Each row corresponds to the same strips as in (a-c).

significantly and, then, a marked transition starts with four simultaneous angles of depletion
(colors blue and green).

Plot (f) is a little different with the bottom part (𝜃 < 0) displaying much softer variations
than the top part (𝜃 > 0). This is probably a result of the inhomogeneous shear rate since
this strip is in an intermediate position between the center, where the accumulated shear
may be too small to form the asymmetric structure, and the rest of the channel, where it
does form. Finally, we observe that the transition requires less shearing as the local volume
fraction 𝜙 increases (top to bottom), but since each plot shows the same time lapse (one half
oscillation), it is clear that the transition is faster toward the wall (bottom to top) due to a
sharp increase of the local shear rate.
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3.5.3. Temporal evolution of the fore-aft asymmetry

In order to study quantitatively the characteristic times (and deformations) of the reorgani-
zation process observed above, we use the parameter

𝐴𝑥𝑦 = ⟨ 𝑟𝑥𝑟𝑦
𝑟2𝑥 + 𝑟2𝑦

⟩
pairs

= 1
2 ⟨sin(2𝜃)⟩pairs , (3.5)

where the averaging is done over the pairs in near contact, using the same criterion as for
the angular distributions (|𝑟 − 𝑟peak| < 1

2Δ𝑟peak). This parameter is one component of the
bidimensional projection of the tensor used by J. Gillissen and H. Wilson (2018) to model
the suspension microstructure and its evolution, but, for our current purposes, it is a variable
that quantifies the anisotropy seen in the angular distributions. Specifically, after reversal, it
displays a smooth transition from positive to negative values of equal magnitude, as shown
in Fig. 3.18.
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Figure 3.18: Microstructure anisotropy parameter 𝐴𝑥𝑦 as a function of local (a) and global (b)
strains accumulated after a reversal, for different strips across the channel thickness (𝑦 direction).

Following the discussion started in Sec. 3.3 for the transient variations of the viscosity, we
plot the variations of 𝐴𝑥𝑦 for different position 𝑦 across the gap as functions of both the local
strain (defined in Eq. 3.3, Fig. 3.18a) and the global strain Δ ̄𝛾 = Δ𝑡𝑉s/𝑏 (Δ𝑡 = 0 at reversal,
Fig. 3.18b) accumulated after a reversal (at zero for both strains). The transition of 𝐴𝑥𝑦 from
positive to negative values tracks the changes seen in Fig. 3.17 from angular pair distributions
with minima at 𝜃/𝜋 ≈ −0.2 and 0.8 to ones with minima at −0.8 and 0.2. As functions of ̄𝛾
(plot b), these transitions occur faster toward the wall (𝑦 = 𝑏), where ̇𝛾 is maximum, while,
as functions of 𝛾 (plot a), they are “faster” toward the center (𝑦 = 0), where 𝜙 is maximum.
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Those are the same trends observed for ̇𝛾qss(𝑦)/ ̇𝛾(𝑦, 𝑡) in Fig. 3.9, emphasizing the connection
between the microstructure and macroscopic variables like the shear rate and the viscosity.

In order to do a more direct comparison, we choose one representative strip and show in
Fig. 3.19a both 𝐴𝑥𝑦/𝐴qss

𝑥𝑦 (red) and ̇𝛾qss/ ̇𝛾 (blue) as functions of 𝛾. Here, 𝐴qss
𝑥𝑦 is the value

reached by 𝐴𝑥𝑦 just before the next reversal (toward the right side of the plot) and, since it
is negative, the curve looks inverted with respect to those shown in Fig. 3.18a. Observe that
𝐴𝑥𝑦 reaches a value similar to its qss one with a strain 𝛾 ∼ 1, while 1/ ̇𝛾 is still far from its qss
value near that strain. Since 1/ ̇𝛾 is a proxy for the viscosity here, a possible interpretation
is that the viscosity fully recovers its steady value only when enough contacts form between
nearby particles, introducing additional forces between them, while 𝐴𝑥𝑦 changes with the
reorganization of pairs without taking into account whether they are touching or just nearby,
something which is very difficult to determine from just visual observations like ours.
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Figure 3.19: a) Comparison of 𝐴𝑥𝑦 and 1/ ̇𝛾 as functions of the strain 𝛾 after a flow reversal (at 𝛾 = 0),
both normalized by their quasi-steady-state (qss) values, for one representative strip. b) Characteristic
strains 𝛾ms

0 and 𝛾sr0.5 versus the local volume fraction 𝜙, obtained from curves like those of (a). Black
crosses: characteristic strain obtained from viscosity measurements in uniform shear flows, from Blanc,
Peters, and Lemaire (2011). Black dashed line: Eq. (1.27) with 𝜖/𝑎 = 0.002, from Pham, Butler, and
Metzger (2016).

From the previous curves we calculate two characteristic strains: 𝛾ms
0 corresponding to

𝐴𝑥𝑦 = 0 and 𝛾sr
0.5 corresponding to 1/ ̇𝛾 = (1/ ̇𝛾max + 1/ ̇𝛾qss)/2 (50% between the minimum

and qss value of 1/ ̇𝛾). Figure 3.19b displays both characteristic strains, along with the strain
𝛾v
0.5 obtained from viscosity measurements in simple shear flows (Blanc, Peters, and Lemaire

2011). These three characteristic strains mark approximate midpoints in the temporal evo-
lution of the corresponding parameter measured after reversal. In the figure, we observe a
decreasing trend with the local volume fraction 𝜙 for the three sets of points.
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In Sec. 3.3, we already discussed 𝛾sr
0.5 and 𝛾v

0.5 (without the superscripts), observing that
the differences between them may steem from differences in physical properties of the particles
that affect their interactions, like their surface roughness. That said, our previous observation
that 𝐴𝑥𝑦 relaxes faster toward its qss value as a function of the strain still stands here: 𝛾ms

0

is always smaller than the other two characteristic strains.

As a final comparison, we show with a black dashed line the critical strain amplitude 𝛾c
from Eq. (1.27) (taken from Pham, Butler, and Metzger 2016). This strain is different to
the others since it is obtained from experiments changing the oscillation amplitude, and it
marks a transition from reversible to irreversible particle trajectories (see Sec. 1.7.1). The
black line matches our values of 𝛾sr

0.5, though this may be a coincidence. The important
conclusion here is that for strains of the order of one after a flow reversal, and decreasing
with the local volume fraction, the suspension undergoes a reorganization with clear effects
on the microstructure, the viscosity, the velocity profile, and the trajectories of the particles.

3.5.4. Non-uniformity of the variations after a flow reversal

Up to this point, we have shown that, locally, the microstructure behaves more or less as
expected, but in non-uniform shear flows like ours, this expected behavior may have some
interesting consequences. Figure 3.20 shows several profiles of 𝐴𝑥𝑦 across the channel gap,
each corresponding to a different global strain Δ ̄𝛾 = Δ𝑡𝑉s/𝑏 before and after a flow reversal.
Just before the reversal (Δ ̄𝛾 = −0.65, blue), 𝐴𝑥𝑦 has positive values everywhere and, after
the reversal at Δ ̄𝛾 = 0, it evolves into a profile roughly symmetrical with respect to the initial
one (Δ ̄𝛾 = 12, orange). In between, we see that the transition is inhomogeneous, progressing
faster near the wall (𝑦/𝑏 = 1) than near the center (𝑦/𝑏 = 0). This is a consequence of the
inhomogeneous shear rate, as previously discussed. Now, remember that the normal stress
𝜎𝑦𝑦 across the gap should be at equilibrium (i.e. uniform) in a fully migrated suspension
under steady flow (see Eq. 1.26 in Sec. 1.6.2). If we assume this to be the case before a
reversal, then, after it, the inhomogeneous variations of the microstructure should lead to
a transient non-equilibrium situation which might explain some of the unexpected behavior
seen in oscillating suspensions, like the inverse migration (Butler, Majors, and Bonnecaze
1999), or the instability seen in our experiments after the quasi-steady state discussed in the
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Figure 3.20: Microstructure anisotropy parameter 𝐴𝑥𝑦 across the channel thickness, at different
global strains Δ ̄𝛾 = Δ𝑡𝑉s/𝑏 after a flow reversal (the numbers shown in the legend).

present Chapter.
In the following two chapters, we will characterize the latter instability and its dependence

the experimental parameters. Finally, in Chapter 6, we will use the present approach and
results to discuss the kind of mechanism which may account for the unstable behavior.
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Chapter 4

Instability of oscillatory channel flows

of suspensions for different oscillation

amplitudes

In Sec. 3.1, we have shown that the evolution of the suspension in our experiments can be
roughly divided in two stages. During the first oscillations, the flow is mostly laminar with a
macroscopic particle distribution that varies only across the channel gap (𝑦 direction). In this
stage, we observe two well-known suspension phenomena: the shear-induced migration and
the formation of an anisotropic microstructure due to the shearing flow. Afterwards, a velocity
component transversal to the main flow direction (𝑥) increases, corresponding to a secondary
flow which deforms the previous particle distribution into a wave-like pattern periodic along
the 𝑥 direction (see the images in Fig. 3.1). The smooth growth of this additional flow and
its spatial periodicity prompts us to consider it as a flow instability. Within this framework,
we will devote the present chapter to describe precisely this instability and its consequences
in experiments using the 85µm particles in the 2mm-thick channel and with bulk particle
volume fraction of 0.4, since those experiments provide the most informative description of
the particle distribution.

As for the influence of experimental parameters, we focus here only on variations in
oscillation amplitude, delaying a comprehensive analysis of the influence of volume fraction,
particle size, and channel dimensions to the next chapter.
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4.1. Particle distribution and secondary velocity field in the flow-

gradient plane

In the previous chapters, we studied only variations across the gap direction (𝑦), but here we
need to consider arbitrary spatial variations of the volume fraction and the velocity field in
the flow-gradient plane (𝑥𝑦). We do this by dividing this plane into a regular grid (32 × 15)
and estimating variables of interest inside each subspace, as described in Sec. 2.7.1. The
size of the grid is a compromise between having enough spatial resolution to describe the
patterns of interest and reducing unwanted fluctuations (noise). Here, we present results
from one example experiment which is representative of our observations when the oscillation
strain amplitude ̄𝛾0 = 𝑇 𝑉s/(2𝑏) is large enough. Later, we will show that as the amplitude
decreases, some characteristics change and eventually the instability disappears.

The color maps of Fig. 4.1 display the particle volume fraction 𝜙 as a function of 𝑥 and
𝑦, and at different global strains ̄𝛾 = 𝑡𝑉s/𝑏 accumulated since the begin of the experiments
at 𝑡 = 0, in all cases, just before flow reversals. These plots illustrate the progression in the
state of the suspension. Comparing plots (a) and (b), we see that the particles have become
more concentrated in the central band around 𝑦/𝑏 = 0 in the latter plot, clearly as a result
of the shear-induced migration, but the general distribution remains more or less invariant
with 𝑥. Afterwards, the central band of high 𝜙 starts to become distorted into a wave-like
pattern periodic along 𝑥. Plot (c) shows the state midway in this process while, in plot (d),
we see it at its maximum amplitude (by a criterion to be made clear later). Later, in plots (e)
and (f), the particles are less concentrated in a band, but the spatial periodicity of the pattern
remains.

In order to track the deformation of the high concentration band seen in Fig. 4.1, we
estimated the coordinate 𝑦𝜙max(𝑥, 𝑡) where 𝜙 is maximum inside each column 𝑥 of the maps
𝜙(𝑥, 𝑦, 𝑡). Due to the noisy nature of the data, we estimate each value from a third-order
polynomial fitted to the values of 𝜙 in each column 𝑥 at a given time 𝑡. The resulting curve
𝑦𝜙max(𝑥, 𝑡) is shown over the maps of Fig. 4.1 using black lines. Later, we will use this
information to track the evolution of the instability in time.

The previously-discussed pattern in 𝜙 influences the particle velocity field (𝑉𝑥, 𝑉𝑦) mea-
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Figure 4.1: Particle volume fraction 𝜙 in the observation plane (𝑥𝑦) at different times 𝑡 just before
a flow reversal, in an example experiment. Main flow toward the left. The colors indicate 𝜙 values.
The black lines correspond to the curves 𝑦𝜙max(𝑥, 𝑡), for each 𝑡. Parameters: 𝜙bulk = 0.4, 2𝑎 ≈ 85 µm,
2𝑏 = 2.1mm, 𝑉s = 1.15mm/s, ̄𝛾0 = 𝑇 𝑉s/(2𝑏) = 13.3.

sured simultaneously and, in particular, it induces an 𝑥-periodic component with the same
wavelength. Globally, the velocity field is still dominated by the Poiseuille-like flow found
before the onset of the instability (see Sec. 3.2), and we may decompose it as1

𝑉𝑥(𝑥, 𝑦, 𝑡) = 𝑉 𝑥(𝑦, 𝑡) + 𝛿𝑉𝑥(𝑥, 𝑦, 𝑡),

𝑉𝑦(𝑥, 𝑦, 𝑡) = 0 + 𝛿𝑉𝑦(𝑥, 𝑦, 𝑡). (4.1)

On the right hand side of both equations, the first term is the dominant laminar flow which
is characterized by velocity profiles like those shown in Fig. 3.5, while the second term cor-
responds to any secondary flow present. In Sec. 3.1, we have already shown that, with the

1Here we assume that the flow is roughly symmetrical against translations in the 𝑧 direction (normal to the
observed plane). Then, we neglect any dependence with 𝑧 and consider 𝑉𝑧 ≈ 0. This is based on the fact that
the stripes observed by Roht et al. 2018 exhibit this symmetry over the width of the cell, except near the side
walls (𝑧 = ±𝑊/2). Moreover, the observation plane is positioned in the center of the width (𝑧 = 0), where the
secondary flows proposed by Ramachandran and D. T. Leighton 2008 are null.
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instability, 𝑉𝑦(𝑥, 0, 𝑡) becomes 𝑥-periodic like 𝜙 and averages to zero. The same characteris-
tics can be expected of 𝛿𝑉𝑥, if we assume that the flow out of the plane is negligible (𝑉𝑧 ≈ 0)
and the incompressibility of the fluid (∇ ⋅𝑽 = 0). Then, we may estimate 𝑉 𝑥 as the average
of 𝑉𝑥 along 𝑥, and separate the secondary flow in our measurements.

Figure 4.2a shows the secondary velocity field (𝛿𝑉𝑥, 𝑉𝑦) corresponding to Fig. 4.1d, when
the magnitude of the secondary flow and the deformation of the central band are both max-
imum. The plot clearly captures a cross-section of recirculation rolls, similar to those ob-
served in other hydrodynamic instabilities. The transverse velocity 𝑉𝑦 reaches its maxima
near 𝑦/𝑏 = 0 and is negligible near the walls (𝑦/𝑏 = ±1), while the opposite is true for
𝛿𝑉𝑥. Near the center, the particles alternate between upward and downward motions, with
stagnation zones in between, where the velocity perturbation is zero. Near the walls, 𝛿𝑉𝑥 also
alternates signs but is out of phase with 𝑉𝑦. The wavelength is roughly 7 𝑏. On top of the
velocity field, we also display the curve 𝑦𝜙max(𝑥, 𝑡) marking where the volume fraction 𝜙 is
maximum. Note that this curve crosses 𝑦/𝑏 = 0 where 𝑉𝑦(𝑥, 0) is approximately maximum.
Later, we will see that this changes for smaller oscillation amplitudes.

Figure 4.2b shows the transverse velocity along the gap center, 𝑉𝑦,cen(𝑥, 𝑡) = 𝑉𝑦(𝑥, 0, 𝑡),
and the longitudinal perturbation near the wall, 𝛿𝑉𝑥,nw(𝑥, 𝑡) = 𝛿𝑉𝑥(𝑥, 0.8𝑏, 𝑡). As expected,
both curves are out of phase by a quarter of wavelength. We observe that the amplitude of
𝛿𝑉𝑥,nw is roughly twice that of 𝑉𝑦,cen. Comparing with 𝑦𝜙max(𝑥, 𝑡), we see that it crosses zero
at roughly the same positions 𝑥 as 𝛿𝑉𝑥,nw, and where |𝑉𝑦,cen| is maximum. We will consider
the implications of this fact further in this chapter.

The fields presented up to this point (𝜙, 𝛿𝑉𝑥, 𝑉𝑦) correspond to times after a significant
strain ̄𝛾 has accumulated since the last flow reversal. Thus, the state of the suspension
can be considered to be momentarily in a sort of quasi-steady state. Between reversals, the
perturbations in 𝜙 and 𝑽 are dragged by the main flow, although at a longitudinal velocity
slightly slower, and when the pump reverses is motion, all components of the velocity field
(main and secondary) change sign.

These two facts can be seen in the spatiotemporal diagram of Fig. 4.3. There, 𝑉𝑦,cen(𝑥, 𝑡)
is represented with colors (blue, negative; red, positive) in a plot where the time is on the
horizontal axis, and the longitudinal coordinate, on the vertical one. Initially (on the left),
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Figure 4.2: a) Secondary velocity field (𝛿𝑉𝑥, 𝑉𝑦) in the observation plane (𝑥𝑦). The black arrows
indicate the direction and relative magnitude of field at each position. The magenta curve denotes
𝑦𝜙max(𝑥, 𝑡) versus 𝑥 and marks the positions where the volume fraction is maximum along 𝑥. Notice
that this representation is compressed horizontally with respect to the images shown previously, en-
larging the transverse variations. b) 𝑉𝑦(𝑥, 0) and 𝑉𝑥(𝑥, 0.8𝑏) versus 𝑥. Both are normalized by the
absolute value of the instantaneous average velocity 𝑉avg (average of 𝑉 𝑥, ≈ 𝑉s). Both plots correspond
to the volume fraction field shown in Fig. 4.1d, when the instability is fully developed, and at a time
just before a flow reversal.

the values are smaller (white or light colors) and no structure is discernible. Around ̄𝛾 = 250,
the structure corresponding to Fig. 4.2 starts to appear as a pattern periodic in 𝑥 and ̄𝛾. The
herringbone form of the pattern means that the curves seen in Fig. 4.2b move to the right
and then, to the left, following the main flow direction. At the times when the flow direction
changes (integer and half-integer values of 𝑡/𝑇 on the top), 𝑉𝑦,cen changes sign, i.e. colors
blue and red exchange.

It is important to note that the particle fluxes induced during both halves of an oscillation
cannot compensate each other, otherwise the particles would not rearrange irreversibly, like
we see with the initial migration and later, with the deformation produced by the instability.
We will postpone further analysis of the variations between reversals until Sec. 4.3, and
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Figure 4.3: Spatiotemporal diagram of 𝑉𝑦,cen(𝑥, 𝑡) normalized by |𝑉avg|. The horizontal direction
corresponds to time 𝑡, shown as an accumulated strain ̄𝛾 = 𝑡 𝑉𝑏/𝑏 below, and as the number of
oscillations 𝑡/𝑇 , above. The vertical direction marks the coordinate 𝑥/𝑏. The color blue indicates the
negative values and, red, positive ones. The plot is divided two parts, with the first two oscillations
on the left, and oscillations 7 through 15, on the right. Same experiment as in Fig. 4.1.

concentrate now in growth of the instability across multiple oscillations.

4.2. Instability growth and long-term variations

In this section, we quantify the temporal variations of the volume fraction 𝜙 and the secondary
flow (𝛿𝑉𝑥, 𝑉𝑦) fields. For this purpose, we calculate instantaneous quantities that capture the
state of the suspension and average them in time to obtain one value per oscillation cycle,
as explained in Sec. 2.7.3. The temporal averages are include only the times corresponding
to the quasi-steady state to exclude the transient variations occuring after each reversal, as
explained in Sec. 3.2. The transient variations between reversals will be reported in Sec. 4.3.
In Sec. 4.4.1, we will consider smaller oscillation amplitudes with strains shorter than those
needed to reach the qss, in this case, we perform the temporal averages during a strain ̄𝛾 = 1
just before each reversal.

Figure 4.4a displays as function of the accumulated strain ̄𝛾 = 𝑡𝑉s/𝑏 the average volume
fraction 𝜙avg(𝑡) = ⟨𝜙(𝑥, 𝑦, 𝑡)⟩𝑥,𝑦, the average in the center line 𝜙cen(𝑡) = ⟨𝜙(𝑥, 0, 𝑡)⟩𝑥, and the
average of the volume fraction in the positions tracked by the curve 𝑦𝜙max(𝑥, 𝑡) (see Fig. 4.1),
𝜙max(𝑡) = ⟨𝜙(𝑥, 𝑦𝜙max(𝑥, 𝑡), 𝑡)⟩𝑥. Observe that 𝜙cen initially increases as particles migrate
toward the gap center, and then decreases as they move out of it due to the secondary flow.
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One may wonder whether the decrease is just a consequence of the way the averaging is
performed, and the central band of high particle concentration (dark red in Fig. 4.1) is just
deformed without a reduction in its concentration. From Fig. 4.1(c-e), it is clear that this may
be the case at the start of the deformation (plot c) but, eventually, the suspension reaches
a more spread out particle distribution (plot e). This observation is reflected in Fig. 4.4a:
the curve 𝜙max(𝑡) remains at a value near its maximum for a longer time than 𝜙cen(𝑡), but
eventually decreases too.
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Figure 4.4: Variations as a function of accumulated strain ̄𝛾 of quantities that characterize the state
of the suspension and its flow during one example experiment. a) Volume fraction averages: global
(𝜙avg), in the gap center (𝜙cen), and peak value at 𝑦𝜙max (𝜙max). b) Amplitude of the transverse
deformation of 𝜙 calculated from 𝑦𝜙max using the rms (𝑦𝜙max,rms) and the autocorrelation (𝑦𝜙max,ac).
c) Amplitude of the instantaneous transverse velocities calculated from 𝑉𝑦,cen using the rms (𝑉𝑦,cen,rms)
and the autocorrelation (𝑉𝑦,cen,ac). d) Wavelengths 𝜆𝜙 and 𝜆sf calculated from the autocorrelations
of 𝑦𝜙max and 𝑉𝑦,cen, respectively. The shading denotes the standard deviation of each time-averaged
value. All: same parameters as in Fig. 4.1, averages of three experiments.

From the curve 𝑦𝜙max(𝑥, 𝑡), we can also obtain an amplitude of the transverse deformation
induced in the particle distribution. In Fig. 4.4b, we show two estimations of its amplitude:
the root mean square (rms), 𝑦𝜙max,rms(𝑡) = ⟨𝑦2𝜙max(𝑥, 𝑡)⟩1/2𝑥 , and 𝑦𝜙max,ac(𝑡), calculated from
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the first maximum of the autocorrelation as explained in Sec. 2.7.4. The second measure
is more selective toward periodic patterns. Nonetheless, both quantities have similar trends
and values during the whole experiment, suggesting that the pattern have a more or less pure
spectrum.2 Both curves are initially constant, with non-zero values due mostly to the noisy
nature of the base data. Around ̄𝛾 = 150, they start to increase until they reach maximum
values at ̄𝛾 ≈ 400. Then, both partially decrease and remain with roughly constant values.
During this last stage, the wave-like pattern in 𝜙 is not so well defined (see Fig. 4.1e-f), and
our estimations of the amplitude may be less reliable.

Taking together Figs. 4.4a and 4.4b, it is clear that, when the band of high particle
concentration starts to deform (see the increase of 𝑦𝜙max,ac at ̄𝛾 ≈ 150), the accumulation of
particles in the gap center stops (see 𝜙cen) and, then, decreases until the deformation reaches
its maximum amplitude around ̄𝛾 ≈ 400. Therefore, it is natural to wonder whether there
are two competing processes, the shear-induced migration and the instability, and if there
is a causal relation between them, e.g. enough particles must migrate to the gap center for
the suspension to become unstable. We do not have definitive answers to these questions
currently, but we will try to shed some light into them in the following sections.

Now, we will turn our attention to the secondary flow (i.e. the perturbation in the velocity
field) and, in order to characterize its temporal variations, we calculate the amplitude of
𝑉𝑦,cen(𝑥, 𝑡) = 𝑉𝑦(𝑥, 0, 𝑡) by the rms and the autocorrelation methods used before. Figure 4.4c
shows both curves as a function of the accumulated strain ̄𝛾. Again, both curves are similar
between them, suggesting that the variations of 𝑉𝑦,cen with 𝑥 have a roughly sinusoidal form,
and they are also similar to those seen in Fig. 4.4b for the amplitude of transverse deformation
observed in 𝜙. A comparable calculation was done for the longitudinal velocity perturbation
using 𝛿𝑉𝑥,nw(𝑥, 𝑡) = 𝛿𝑉𝑥(𝑥, 0.8𝑏, 𝑡), resulting in curves with similar shapes, but with values
about 2.5 times larger than those obtained from 𝑉𝑦,cen. The previous observations, and the
fact that the transverse and longitudinal velocity components are related by the continuity
equation (i.e. mass conservation), suggests that 𝑉𝑦,cen,ac is a good indicator of the amplitude
of the secondary flow as a whole and, more generally, of the instability.

In summary, the onset and growth of the instability can be simultaneously detected in

2Bear in mind that the division of the 𝑥𝑦 plane into a grid also functions as a high-pass filter that excludes
fluctuations at very small scales (particle size), but those are not of interest here.
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the particle distribution (looking at 𝑦𝜙max,ac) and the secondary flow (looking at 𝑉𝑦,cen,ac). To
make this point even more clear, Fig. 4.4d displays the wavelengths 𝜆𝜙 and 𝜆sf calculated
using the autocorrelations (details in Sec. 2.7.4) of 𝑦𝜙max(𝑥, 𝑡) and 𝑉𝑦,cen(𝑥, 𝑡), respectively.
The shared regions represent the pointwise standard deviation. Remember that each point
in this section is the average during short lapses just before reversals. Initially ( ̄𝛾 < 300) the
values are not reliable due to their large fluctuations (large shaded regions), and the difference
between 𝜆𝜙 and 𝜆sf may be meaningless. Afterward ( ̄𝛾 ≈ 300), both curves settle on 𝜆/𝑏 ≈ 7,
showing that both 𝜙 and the secondary flow are similarly modulated along 𝑥. Then, after the
peak in the instability amplitudes ( ̄𝛾 ≈ 400), the wavelengths start to increase until 𝜆/𝑏 ≈ 7.5
is reached.

The figures of this section present a consistent scenario where the evolution of the oscil-
lating suspension can be divided in three well-defined stages. The first stage is before the
onset of the instability, when the transverse velocities are small and the particle are migrating
toward the center of the gap. The second stage corresponds to the simultaneous growth of
periodic perturbations in the volume fraction (the wave-like pattern shown in Fig. 4.1) and
in the velocity field (the secondary flow shown in Fig. 4.2). Both perturbations are periodic
along 𝑥, with a similar wavelength that becomes well defined during this stage. The final
stage corresponds to a long-term, probably non-linear, evolution of the perturbations.

4.3. Short-term variations after reversal

The previous sections focused primarily on the long-term evolution of the perturbations
introduced by the instability into the volume fraction and velocity fields. In this section,
we present the transient variations that occur between two flow reversals in the oscillatory
flow, revealing a more complex relationship between the two perturbations than previously
suggested. The results presented here correspond to “large” oscillation amplitudes ( ̄𝛾0 ≳ 11),
while Section 4.4.2 will show notable differences at smaller amplitudes ( ̄𝛾0 ≲ 7).

Continuing our analysis of the same experiment from previous sections ( ̄𝛾0 = 13.3),
Fig. 4.5 displays the variations of the particle volume fraction 𝜙 and secondary velocity
field (𝛿𝑉𝑥, 𝑉𝑦) after a flow reversal occurring at ̄𝛾 = 372.8, when 𝑉𝑦,cen,ac is roughly maximum.
We choose a time near the maximum amplitude of the perturbations because they are then
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Figure 4.5: a-c) Particle volume fraction 𝜙 in the 𝑥𝑦 plane at three different accumulated strains
̄𝛾 after a flow reversal occurring at ̄𝛾 = 372.8. The black curves show the deformation produced by

the main flow [time integral of 𝑉 𝑥(𝑦, 𝑡)]. d-f) Secondary velocity field (𝛿𝑉𝑥, 𝑉𝑦) in the same plane and
strains as above. The magenta curve marks the positions of maximum 𝜙 inside each column (𝑦𝜙max).
Main flow from left to right. Same experiment as in Fig. 4.1.

easier to follow, but the following description applies also at any other time (before and after)
when the instability is apparent as 𝑥-periodic perturbations in 𝜙 and (𝛿𝑉𝑥, 𝑉𝑦).

Shortly after reversal (Fig. 4.5a,d), 𝜙 is indistinguishable from before (Fig. 4.1d), while
the secondary velocity has changed sign (compare with Fig. 4.2a), but it is otherwise similar.
In the figure here, the main flow is from left to right (𝑉 𝑥 > 0), and looking carefully at the
next plots (b,c,e,f), it is possible to notice that the pattern in both fields is being dragged
to the right. To make a direct comparison, superimposed over the map of 𝜙, we show how a
hypothetical black vertical line would deform under the effect of the main flow 𝑉 𝑥. Observe
that the sinusoidal pattern in 𝜙 is being left behind by the black curve, especially in the
center. This means the pattern does not moves like a solid block: the particles forming it
have to be constantly rearranging in other to move as suggested by 𝑉 𝑥, while keeping the
general form of the pattern in 𝜙. Regarding the secondary flow (plots d-f), it seems to move
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with the pattern in 𝜙 at all times (compare with the superimposed magenta curve showing
𝑦𝜙max versus 𝑥). At longer times (not shown), the same characteristics remain valid.

In order to validate our impressions from the previous plots, we use the cross-correlations
along 𝑥 between successive curves to calculate the travel velocities of both patterns. For this
purpose we choose the quantities 𝑦𝜙max(𝑥, 𝑡) and 𝑉𝑦,cen(𝑥, 𝑡), respectively, and followed the
procedures described in Sec. 2.7.4. The resulting travel velocities have large fluctuations in
time due to limitations in the procedure,3 but on average both are ≈ 0.8 𝑉avg (curves shown
in Sec. 4.4.2), confirming our observation that the pattern induced by the instability lags
behind the main flow.

Turning our attention to the amplitude of the perturbations, there is a sharp drop of
𝑉𝑦,cen,ac immediately after a reversal, as shown by the blue curve in Fig. 4.6a, while 𝑦𝜙max,ac is
roughly unchanged (red curve). The value of 𝑉𝑦,cen,ac remains at a plateau up to Δ ̄𝛾 ≈ 4 and,
then, it slowly increases until it reaches the value from before the reversal (the quasi-steady
value) at Δ ̄𝛾 ≈ 10. It is important to note that the variations of 𝑉𝑦,cen,ac are representative
of the secondary flow over the whole plane, not just in the center line (𝑦 = 0) where 𝑉𝑦 is
measured to make the calculation.
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Figure 4.6: Variations after flow reversal (Δ ̄𝛾 = 0). a) Amplitudes of the perturbations in the
velocity field (blue) and volume fraction (red). The former is characterized by 𝑉𝑦,cen,ac normalized by
|𝑉avg| (roughly constant, ≈ 𝑉s = 1.15mm/s) and, the latter, by 𝑦𝜙max,ac normalized by the channel
half gap 𝑏. b) Phase of the 𝑉𝑦,cen relative to 𝑦𝜙max. Same experiment as in Fig. 4.1.

The lack of significant changes of 𝑦𝜙max,ac after reversal is to be expected since this variable
tracks a macroscopic arrangement of the particles and those cannot change suddenly. On the

3Here, we are working with almost instantaneous results (one video frame). All the curves have fluctuations
from one frame to the next, and the cross-correlation procedure is sensitive to them.
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other hand, the sudden drop of 𝑉𝑦,cen,ac is clearly connected with the loss of particle contacts
after reversal. In Fig. 3.9b, we have shown that the viscosity (by proxy) drops and, then,
recovers its quasi-steady value as the contacts between the particles are recovered all over
the channel gap after a strain Δ ̄𝛾 ≈ 10, while the microstructure parameter 𝐴𝑥𝑦 changes
sign across the gap as shown in Fig. 3.18b. Those two figures and the ones in this section
correspond to the same experiments. Given the similarity in the strain scale for the changes of
𝑉𝑦,cen,ac compared with those other two variables, the most plausible explanation for the post-
reversal variations of 𝑉𝑦,cen,ac is, likewise, the loss of contacts and their subsequent recovery
as the microstructure reorganizes.

Finally, using the cross-correlation along 𝑥 between 𝑦𝜙max(𝑥, 𝑡) and 𝑉𝑦,cen(𝑥, 𝑡), we esti-
mated a phase relation 𝜑𝑉𝑦𝜙 between both perturbations induced by the instability. Fig-
ure 4.6b shows that 𝜑𝑉𝑦𝜙 changes sign after reversal, this is normal since the secondary flow
does so, but also increases its absolute value from ≈ 0.4 𝜋 to ≈ 0.6 𝜋 and, then, relaxes slowly
over a timescale similar to 𝑉𝑦,cen,ac. In Sec. 4.4.2, we will see that the temporal variations
of the phase relationship after reversal exhibit qualitative differences in experiments with
smaller oscillation amplitudes.

4.4. Influence of the oscillation amplitude

We performed experiments with oscillation strain amplitudes ̄𝛾0 = 𝑇 𝑉s/(2𝑏) between 4.4 and
15.5 using the same channel and suspension as in the experiment shown before ( ̄𝛾0 = 13.3).
This variation was induced by changing only the oscillation period 𝑇 , while keeping 𝑉s =
1.15mm/s and the Reynolds number Re = 𝑉s𝑏𝜌f/𝜂f ≈ 0.2. In Sec. 5.4, we will show that
variations of Re do not influence significantly the development of the instability.

4.4.1. On the development of the instability

Figure 4.7 shows the evolution of 𝜙cen (plot a), 𝑦𝜙max,ac (plot b), 𝑉𝑦,cen,ac (plot c), and 𝜆sf

(plot d) for different oscillations amplitudes 𝑇 𝑉s/𝑏. Each curve corresponds to the pointwise
average of two or three experiments with the same parameters. In each plot, all the curves
mostly overlap, except only for the following differences.

The experiments with ̄𝛾0 = 8.9 are slightly delayed with the respect to the others. The
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Figure 4.7: Variations as a function of the accumulated strain ̄𝛾 of quantities that characterize the
state of the suspension and its flow during experiments with different oscillation strain amplitudes ̄𝛾0.
a) Volume fraction average in the gap center. b) Amplitude of the transverse deformation of 𝜙, calcu-
lated from 𝑦𝜙max using the autocorrelation. c) Amplitude of the instantaneous transverse velocities,
calculated from 𝑉𝑦,cen using the autocorrelation. d) Wavelengths calculated from the autocorrelation
of 𝑉𝑦,cen. All: the parameters beside ̄𝛾0 (and 𝑇 ) are the same as in Fig. 4.1. Each curve is the pointwise
average of two or three experiments.

curves shown correspond to the average of two experiments performed one after the other,
both with very similar temporal evolutions. It is unknown to us whether this delay is just
a fluctuation in the experimental conditions or there is physical meaning in it. Nonetheless,
the difference with respect to the other curves is not large enough to weaken our following
conclusions.

A more clear dependence on ̄𝛾0 arises after 𝑉𝑦,cen,ac reaches its maximum, around ̄𝛾 = 400
in Fig. 4.7c. The two curves with smaller oscillations (blue and red) retain values consistently
larger than the three curves with larger oscillations, which have pronounced decreases. A sim-
ilar observation can be made in plot (b) for the amplitude of the volume fraction perturbation,
although the variations between curves are weaker in this case.

On the other hand, in plot (d), we see that in all cases the wavelength starts with larger
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values and large fluctuations, and reaches a roughly constant value after the instability is
developed enough ( ̄𝛾 ≈ 250). These final values are spread between 6 𝑏 and 8 𝑏, and increase
with the oscillation amplitude.

To conclude, we observe that the growth of the perturbations depend essentially on the
accumulated deformation induced by the flow, with little influence of the oscillation ampli-
tude. In the next chapter, we will show that the development of the instability can be delayed
for oscillations amplitudes outside of the range reported here. Although those observations
were made using the 40µm particles, we believe that they deserve a mention here. For very
large amplitudes ̄𝛾0, more strain ̄𝛾 is accumulated before the onset of the instability, sug-
gesting that steady flows ( ̄𝛾0 → 0) are stable, in agreement with previous works (Lyon and
Leal 1998a; Rashedi et al. 2020). On the other hand, for amplitudes below a threshold of the
order of one, the flow is stable and the perturbations shown in this chapter do not appear,
suggesting the kind of reversible behavior showing in Sec. 1.7.2 (Morris 2001; Guasto, Ross,
and Gollub 2010).

4.4.2. Between reversals

In Sec. 4.3, we discussed the variations of the perturbations in the volume fraction and the
velocity field for an experiment with ̄𝛾0 = 13.3, which is near the upper bound of ampli-
tudes tested using the 85µm particles. For smaller amplitudes, we observe some qualitative
differences in the relation between both perturbations.

Figure 4.8 shows a sequence of secondary velocity maps before and after a flow reversal,
during one example experiment with 𝑇 𝑉s/𝑏 = 8.9. Plot (a) shows the situation before a
reversal when the instability is fully developed. Looking at the centerline (𝑦/𝑏 = 0), we
see that 𝑦𝜙max (magenta curve), which tracks where 𝜙 is maximal, is in phase with 𝑉𝑦,cen:
the magenta curve has positive values where the particles are going up, negative where they
go down, and its zeros coincide with the regions of null velocity perturbation. This is in
contrast with the equivalent plot for oscillations of larger amplitude (Fig. 4.2a), where both
perturbations are out of phase by roughly a quarter of wavelength.

Immediately after the flow reverses, in plot (b), the secondary flow field changes signs,
while the perturbation in 𝜙 remains unchanged. Now, both perturbations are out of phase by
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Figure 4.8: Secondary velocity field (𝛿𝑉𝑥, 𝑉𝑦) in the 𝑥𝑦 plane at six different strains (i.e. times) after
a flow reversal in an experiment with small oscillations. The magenta curve marks the positions of
maximum 𝜙 inside each column (𝑦𝜙max versus 𝑥). Main flow direction indicated by the yellow arrows.
Parameters: 𝜙bulk = 0.4, 2𝑎 ≈ 85 µm, 2𝑏 = 2.1mm, 𝑉s = 1.15mm/s, ̄𝛾0 = 𝑇 𝑉s/(2𝑏) = 4.4.

half a wavelength. This situation is apparently out of equilibrium since in the following plots
(c-e), the perturbation in 𝜙 (tracked by the magenta curve) seems to move faster to the right
(direction of the main flow) than the perturbation velocity field, resulting in a progressive
change in the relative phase between both, until it is fully “corrected” in plot (f).

We calculate again the travel velocities of both perturbations using the cross-correlations
between successive curves 𝑦𝜙max and 𝑉𝑦,cen. Figure 4.9 shows both travel velocities (𝑉𝑉𝑦

and
𝑉𝜙), along with the velocity 𝑉cen of the main flow in the gap center, all three normalized
by the instantaneous average velocity of the main flow, 𝑉avg. The left plot corresponds to
experiments with a small oscillation amplitude ( ̄𝛾0 = 4.4), while the right one, to large
oscillations ( ̄𝛾0 = 13.3). In both plots, 𝑉𝜙 fluctuates around constant values: 0.9 𝑉avg, on the
left and 0.8 𝑉avg, on the right. On the other hand, 𝑉𝑉𝑦

has a value similar to 𝑉𝜙 for large
oscillations (right), but is much smaller for small oscillations (left). In this later case, 𝑉𝑉𝑦

is nearly zero up to Δ ̄𝛾 ≈ 1 and then, fluctuates about 0.4 𝑉avg. This is consistent with
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Figure 4.9: Travel velocities 𝑉𝑉𝑦 (dashed blue lines) and 𝑉𝜙 (solid red line) as functions of the
accumulated strain Δ ̄𝛾 after a flow reversal. For reference, 𝑉cen is also shown (dashed black line).
All three velocities are normalized by 𝑉avg. a) Small oscillations [ ̄𝛾0 = 𝑇 𝑉s/(2𝑏) = 4.4]. b) Large
oscillations [ ̄𝛾0 = 𝑇 𝑉s/(2𝑏) = 13.3].

our previous observation, in Fig. 4.8, that the velocity perturbation lags behind the volume
fraction one, allowing it to recover the phase relation present before the reversal.

In order to do a more complete comparison between oscillation amplitudes, Fig. 4.10
displays for 𝑉𝑦,cen, its amplitude (plot a) and its phase relative to 𝑦𝜙max (plot b). In plot (b),
we see that the relative phase for large oscillations (11.1 ≤ ̄𝛾0 ≤ 15.5) varies from ≈ 0.6 𝜋
to ≈ 0.4 𝜋 after reversal, while for small oscillations (4.4 ≤ 𝑇 𝑉𝑠/𝑏 ≤ 6.7), it continuously
increases starting from ≈ 0.8 𝜋 immediatelly after reversal and finishing at ≈ 0.2 𝜋 when
Δ ̄𝛾 ≈ 6.4 This later variation agrees with our observations in Fig. 4.8 where the relative
phase changes from nearly zero before reversal to a half wavelength (𝜑𝑉𝑦𝜙 = 𝜋) after reversal
and, then, it progressively goes back zero before the next reversal.

In Fig. 4.10a, we observe that the amplitude of the transverse velocities (𝑉𝑦,cen,ac) sharply
decreases immediately after reversal and, eventually, recovers its previous value, but with
some differences in its evolution depending on the oscillation amplitude. For large oscillations
(11.1 ≤ ̄𝛾0 ≤ 15.5), the curves remain more or less constant and then increase linearly. For
intermediate oscillation amplitudes (6.7 ≤ ̄𝛾0 ≤ 8.9), it decreases until it reaches a non-zero
minimum and, then, increases. And finally, for the smallest oscillations ( ̄𝛾0 = 4.4), the curve
presents a much smaller range of values, with some oscillations after reversal, before a final
increase.

4The discontinuity for 𝜑𝑉𝑦𝜙 = ±𝜋 is just a consequence of the way we represent a 2𝜋-periodic variable on
the plot.
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Figure 4.10: Comparison for difference oscillation amplitudes ̄𝛾0 of the transverse velocity pertur-
bation amplitude (a) and the phase relative to the volume fraction perturbation (b), before and after
a flow reversal occurring at Δ ̄𝛾 = 0.

The differences between oscillation amplitudes discussed in this section are puzzling in
the face of how similar all the curves for the long-term variations are in Fig. 4.7. In the
following chapter, we will continue the characterization of the instability using experiments
performed with the 40µm particles. In those experiments, the particles sometimes overlap
inside the laser plane, limiting our ability to characterize the volume fraction in the observed
plane. Instead, we will rely on measurements of the velocity field and the intuitions built up
in these previous sections in order to compare both sets of experiments.
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Chapter 5

Study of the influence of the

experimental parameters

In the previous chapter, we characterized an instability that has been the focus of our studies,
using experiments with our largest beads (2𝑎 ≈ 85 µm). Those experiments provide quantita-
tive information on the particle distribution and velocities, allowing us to see clearly that the
instability perturbs the particle volume fraction 𝜙 in the observation plane (𝑥𝑦) and intro-
duces a secondary velocity field (𝛿𝑉𝑥, 𝑉𝑦). Both perturbations are equally periodic along the
channel length and increase in amplitude simultaneously as the suspension oscillates. These
observations allow us to establish a close connection between the perturbation of 𝜙 and the
increase of transverse velocities 𝑉𝑦. In the present chapter, we will take advantage of this con-
nection to continue our characterization of the instability using smaller beads (2𝑎 ≈ 41 µm),
where limitations in the visualization technique do not allow for a precise measurement of 𝜙,
but 𝑉𝑦 remains a good indicator of the unstable behavior.

We will start by comparing the experiments of Chapter 4 with new ones using smaller
particles in a channel with the thickness scaled down to keep most length ratios approximately
equal. After confirming that we observe the same phenomenon (the instability) in both cases,
we will proceed with a study of the instability growth rate for different oscillation amplitudes
and bulk particle volume fractions, making connections with shear-induced migration and
the particle self diffusivity from previous studies. Then, we discuss experiments in which
the Reynolds number varies by several orders of magnitude down to values for which inertial
effects are ruled out. Finally, we will consider the influence of the geometry: first by changing
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the channel thickness and, then, the aspect ratio of the cross section.

5.1. Comparison of experiments with different particle sizes

In this section, we report experiments using spheres of diameter 2𝑎 ≈ 41 µm, a channel with
thickness 2𝑏 = 1.0mm, a surface average velocity 𝑉s = 1.16mm/s, and a bulk particle volume
fraction 𝜙bulk = 0.4. The values of the first two parameters are approximately half of those
used in the Chapter 4, effectively scaling down the experiments, while keeping the ratio 𝑏/𝑎
and other parameters similar. The Reynolds number Re = 𝑉𝑠𝑏𝜌/𝜂𝑓 ≈ 0.1 is now half of
the previous one, but in Sec. 5.4 we will see that this does not have any influence on the
results. Another dimensionless number which varied is the aspect ratio 𝑊/(2𝑏): since we
keep the channel width 𝑊 roughly constant (10.5mm here, 10.0mm in Chapter 4), the ratio
𝑊/(2𝑏) approximately doubles (10.5 here, 4.8 in Chapter 4). In Sec. 5.7, we will see that
no significant differences were found for ratios above 5, but important ones were observed at
lower values.

Figure 5.1 shows a spatiotemporal diagram of 𝑉𝑦,cen(𝑥, 𝑡), comparable to the one shown in
Fig. 4.3. The horizontal axis corresponds to time (as an accumulated strain ̄𝛾 or a number
of oscillations 𝑡/𝑇 ) and the vertical one, to the coordinate 𝑥 along the channel length. The
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Figure 5.1: Spatiotemporal diagram of 𝑉𝑦,cen(𝑥, 𝑡) normalized by |𝑉avg|. The horizontal direction
corresponds to time 𝑡, shown as an accumulated strain ̄𝛾 = 𝑡 𝑉𝑏/𝑏 below, and as the number of
oscillations 𝑡/𝑇 , above. The vertical direction marks the coordinate 𝑥/𝑏. The color blue and red
indicate the negative and positive values, respectively. Parameters: 𝜙bulk = 0.4, 2𝑎 ≈ 41 µm, 2𝑏 =
1.0mm, 𝑉s = 1.16mm/s, ̄𝛾0 = 𝑇 𝑉s/(2𝑏) = 13.9.
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colors blue, white, and red codify negative, null, and positive values of 𝑉𝑦,cen, respectively.
Qualitatively, this graph is very similar to the one shown in Fig. 4.3 for the larger beads: a
herringbone pattern appears after a number of oscillations, periodic both in 𝑥 and ̄𝛾. In this
case, the pattern appears earlier (around ̄𝛾 = 150 instead of 250), a difference that we will
study in the following section.

Selecting the time of maximum amplitude of 𝑉𝑦,cen ( ̄𝛾 ≈ 250), we plot in Fig. 5.2 the sec-
ondary velocity field in the 𝑥𝑦 plane. Inside the band −0.7 < 𝑦/𝑏 < 0.7, we see recirculation
cells similar to those seen in Fig. 4.2a. Outside, the velocity could not be estimated with the
required spatial resolution due to the compounded effect of lower particle concentration near
the walls and not all of them being visible in these experiments. The wavelength measured
in units of 𝑏 is also similar (𝜆 ≈ 7 𝑏). In Sec. 5.5, we will see that 𝜆 is roughly proportional
to 𝑏 (channel half thickness).
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Figure 5.2: Secondary velocity field (𝛿𝑉𝑥, 𝑉𝑦) in the observation plane (𝑥𝑦) at the time of maximum
amplitude. The black arrows indicate the direction and relative magnitude of the field at each position.
Notice that this representation is horizontally compressed with respect to the real images, enlarging
the transverse variations. Main flow toward the left. Same experiment as in Fig. 5.1.

From the previous observations, we conclude that both sets of experiments (beads of
diameter ≈ 41 µm and ≈ 85 µm) present instabilities characterized by similar perturbations
to the velocity field. In the following section, we will study the influence of the oscillation
amplitude on the development of the instability, comparing between the results with both
kinds of particles.
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5.2. Influence of the oscillation amplitude on the growth of the in-

stability

Following the same procedure as in Sec. 4.2, we estimate here the amplitude of the velocity
perturbation as a function of time using 𝐴𝑉𝑦

( ̄𝛾) = 𝑉𝑦,cen,𝑎𝑐( ̄𝛾)/𝑉avg( ̄𝛾), and study this variable
for experiments with different oscillation amplitudes ̄𝛾0 = 𝑇 𝑉s/(2𝑏). In this case, we vary
both the period 𝑇 and surface average velocity 𝑉s: we performed first a set of experiments
with 2 ≤ 𝑇 ≤ 20 s and 𝑉s = 1.16mm/s and, then, a set with periods 𝑇 twice longer and half
the velocity 𝑉s. Both sets produced similar results (within our experimental uncertainty) for
plots as a function of the accumulated strain ̄𝛾 (i.e. times normalized by 𝑏/𝑉s) and with the
velocities normalized by measured average longitudinal velocity 𝑉avg (which is proportional
to 𝑉s). Here we present directly averages of experiments with the same amplitude ̄𝛾0. A more
thorough study performed by varying 𝑉s can be read in Sec. 5.4. The other parameters (𝜙bulk,
𝑎, 𝑏) are the same as in the experiment of the previous section. Figure 5.3 shows that the
resulting curves are qualitatively similar to the ones shown in Fig. 4.7c for the larger beads,
but there are some differences as detailed below.
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Figure 5.3: Variation of 𝐴𝑉𝑦 = 𝑉𝑦,cen,𝑎𝑐/𝑉avg as a function of accumulated strain ̄𝛾 = 𝑡 𝑉s/𝑏. Results
from experiments with different oscillation amplitudes ̄𝛾0 are shown, with the smaller amplitudes on
the left (a), and the largest, on the right (b). Other parameters: 𝜙bulk = 0.4, 2𝑎 ≈ 41 µm, 2𝑏 = 1.0mm.

For intermediate oscillation amplitudes (7.0 ≤ ̄𝛾0 ≤ 11.6), there is little influence of ̄𝛾0,
like in Fig. 4.7c, but here the transverse velocities start to increase around ̄𝛾 = 75, and reach
a maximum around 200, for roughly half of the strain needed by the larger particles. It is
important to remember that the beads (larger and smaller) do not differ only in their sizes,
but they also come from different manufacturers (Sec. 2.1), and differences in the surface
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roughness might account for the difference in the rate at which the system evolves under
strain (see Sec. 1.7.1 and Pham, Metzger, and Butler 2015, for instance).

Outside the range 7.0 ≤ ̄𝛾0 ≤ 11.6 in Fig. 5.3, the curves 𝐴𝑉𝑦
( ̄𝛾) have similar shapes, but

the accumulated strains required for a growth to be visible and to reach the maximum value,
both increase as the oscillation amplitude decreases ( ̄𝛾0 ≤ 9.3 in plot a) or increases ( ̄𝛾0 ≥ 9.3
in plot b).

In order to quantify the characteristic strains for the growth of the instability, we show
in Fig. 5.4 a semi-log plot of 𝐴𝑉𝑦

as a function of the accumulated strain ̄𝛾 for one example
experiment. Using plots like this one, we identify for each experiment an interval [ ̄𝛾onset, ̄𝛾sat]
where there is an exponential growth (linear on the plot), and obtain a growth rate 𝜎 from
a linear fit (read a full explanation in Appendix B.1). Notice that mathematically,

𝜎 =
log[𝐴𝑉𝑦

( ̄𝛾sat)/𝐴𝑉𝑦
( ̄𝛾onset)]

̄𝛾sat − ̄𝛾onset
, (5.1)

and that we can interpret 𝜎 as the inverse of the strain needed for the transverse velocity
perturbation to grow by a factor e ≈ 2.7.
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Figure 5.4: Curve ̄𝛾0 = 7.0 from Fig. 5.3a, but using a logarithmic vertical scale. Due to the scale,
the “overshoot” seen in the other figure is less pronounced here, while the small variations near the
beginning are enlarged.

The fact that we do not observe an exponential growth from the beginning (i.e. ̄𝛾onset > 0)
could be due to another physical process that needs to happen before (e.g. shear-induced
migration of particles to the gap center), but it could also be affected by a base noise level in
our measurements that the perturbation needs to overcome to be detectable. On the other
hand, ̄𝛾sat marks the accumulated strain at which the perturbation growth starts to saturate,
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usually reaching the maximum value of 𝑉𝑦,cen,𝑎𝑐 shortly after.
Figure 5.5 shows the parameters ̄𝛾onset, ̄𝛾sat, and 𝜎 versus the oscillation amplitude ̄𝛾0

for the experiments using the small beads (from this chapter), and the large ones (from
Chapter 4). Observe that the three parameters are roughly constant for ̄𝛾0 between 5 and 15,
in both cases. The experiments with large beads fall almost completely inside this range and
do not show any significant variations with the oscillation amplitude. On the other hand,
the experiments with smaller beads show clearly that outside this range, the growth of the
perturbation is slower, with larger characteristic strains, and a smaller growth rate. This is
specially clear for ̄𝛾0 < 5, where the strains required for instability onset and saturation may
diverge as the oscillation amplitude decreases, and the growth rate seems to decrease toward
zero.
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Figure 5.5: a) Parameters ̄𝛾onset and ̄𝛾sat for experiments with different oscillation amplitudes (hor-
izontal axis) and beads types. b) Same for parameter 𝜎. The small beads experiments are the same
as in Fig. 5.3, and the large beads ones, correspond to Fig. 4.7.

5.2.1. A simple interpretation of the influence of the oscillation am-

plitude on the growth rate

In Sec. 1.7, we reviewed previous works showing that there is a critical amplitude for shearing
oscillations in suspensions, below which the particles return to their initial positions after each
oscillation, and above which the particles positions randomly change in a diffusive motion.
Furthermore, we have seen in Sec. 1.5.2 and Sec. 3.5 that, after flow reversal, the particle
microstructure undergoes a reorganization with a transient loss of most contacts and a sharp
reduction of the viscosity. Particle contact interactions were identified as the main reason for
irreversible processes in suspensions (Lemaire et al. 2023), such as shear-induced migration,
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and are most probably the driving mechanism of the instability studied here. Therefore, it
is reasonable to consider that during a small strain ̄𝛾𝑐 after reversal, the perturbations in-
duced by the instability do not grow in amplitude (i.e. zero growth rate), and it is only after
this much strain has taken place during one half oscillation, that the perturbations develop.
This view is partly supported by Fig. 4.6a where we have shown that 𝐴𝑉𝑦

decreases after
reversal and recovers its previous value only after a certain accumulated strain, although this
interpretation is complicated by the fact that the curves corresponding to different oscilla-
tion amplitudes start to increase after different amounts of strains have accumulated (see
Fig. 4.10a).

We propose here a simplified interpretation where a half oscillation that strains the sus-
pension by an amount ̄𝛾0 in total, only contributes to the perturbation growth by a strain
̄𝛾0 − ̄𝛾𝑐. In particular, we will assume a step-like variation of the growth rate between rever-

sals, with no growth up to a strain ̄𝛾c and, after that, an intrinsic growth rate 𝜎i which does
not depends on the oscillation amplitude ̄𝛾0. Then, the growth rate we measure by observing
the increase of 𝐴𝑉𝑦

from one oscillation to the next one will be

𝜎 = ̄𝛾0 − ̄𝛾𝑐
̄𝛾0

𝜎i. (5.2)

Figure 5.6 displays 𝜎 ̄𝛾0 versus 𝛾0. For experiments with small beads, it shows indeed
that 𝜎 ̄𝛾0 increases linearly with ̄𝛾0 for small oscillations ( ̄𝛾0 < 15) and tends to zero as
̄𝛾0 approaches a non-zero critical strain ̄𝛾𝑐 ≈ 2. On the other hand, for large oscillation
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Figure 5.6: Plot of 𝜎 ̄𝛾0 versus oscillation amplitude ̄𝛾0 for the same experiments as in Fig. 5.5.
Fitting linear functions to the points with ̄𝛾0 < 15, we can estimate the parameters of Eq. (5.2).
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amplitudes ( ̄𝛾0 > 15), 𝜎 ̄𝛾0 seems to saturate, suggesting that for long strains after the reversal,
the development of the perturbations induced by the instability becomes hindered again. For
the larger beads, the plot is also linear, but the lack of experiments with small and large
enough oscillation amplitudes prevents us from reaching any strong conclusions.

5.2.2. Comparison of the onset strain to a characteristic migration

strain

In the experiments using the larger beads (Chapter 4), we have seen that the instability onset
occurs roughly when the volume fraction reaches a maximum in the center of the channel
thickness, after increasing for some time (see Figs. 4.4 and 4.7). In the experiments with the
smaller beads, we do not have access to precise information about the particle concentration,
but it is reasonable to expect some sort of particle redistribution to be occurring, because
that is the only way for the system to change irreversibly, ruling out any deformation of the
particles, variations in the fluid composition, and inertial effects (see Sec. 5.4 for the latter)

To obtain a characteristic strain for this process, we will consider that it involves the
migration of particles across the gap, and that we can model it as a diffusive process, as done
by Nott and Brady (1994).1 Then, given a particle self-diffusivity 𝐷 and channel thickness
2𝑏, we can calculate a characteristic time 𝑡sim = 𝑏2/(4𝐷) for the shear-induced migration
(sim). In Sec 1.6.1, we have seen that 𝐷 = 𝐷̂(𝜙) ̇𝛾 𝑎2, where ̇𝛾 is the local shear rate, 𝑎 is
the particle radius, and 𝐷̂ is an increasing function of the local volume fraction 𝜙. Then, we
may estimate a characteristic strain taking 𝜙 ≈ 𝜙bulk and ̇𝛾 ≈ 1.5𝑉s/𝑏, to obtain:2

̄𝛾sim = 𝑡sim 𝑉s/𝑏 =
1
6𝐷̂

(𝑏
𝑎)

2
. (5.3)

The previous equation is valid for steady flows but, like we said before, after a flow reversal the
particles transiently lose contacts and, as a simple approximation, we may consider that the
irreversible behavior is “paused” until the particles reorganize after an accumulated strain ̄𝛾c.

1We neglect any particle redistribution along the channel length because it would require much more accu-
mulated strain to occur due to diffusion, and also because we do not have any evidence of it before the onset of
the instability.

2For a Newtonian fluid in Poiseuille flow with average velocity 𝑉s and a channel with gap 2𝑏, the average
shear rate is 1.5𝑉s/𝑏.
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Then, each half oscillation contributes a strain ̄𝛾0 − ̄𝛾c to the migration process, and

̄𝛾0
̄𝛾sim,osci

= ̄𝛾0 − ̄𝛾c
̄𝛾sim

, (5.4)

where ̄𝛾sim,osci is an estimation of the accumulated strain needed with oscillations to reach
a state equivalent to that reached after a strain ̄𝛾sim in steady flows. Next, we will analyze
whether ̄𝛾onset is equal to ̄𝛾sim,osci or, at least, partly explained by it.

In Fig. 5.7, we plot ̄𝛾0/ ̄𝛾onset as a function of the oscillation amplitude ̄𝛾0, that is, we plot
the inverse of the number of half oscillations (i.e. reversals) before the onset. This plot is very
similar to that of Fig. 5.6, and the conclusions are almost identical: the variation of ̄𝛾0/ ̄𝛾onset is
linear with ̄𝛾0 for small enough oscillations ( ̄𝛾0 < 12). For the small beads a linear fit crosses
the horizontal axis at a positive value ̄𝛾c = 1.8, similar to the one found in the previous
section. On the other hand, the large beads do not seem to agree with this interpretation,
but additional experiments with smaller oscillation amplitudes would be required to reach
more definitive conclusions.
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Figure 5.7: Plot of ̄𝛾0/ ̄𝛾onset versus oscillation amplitude ̄𝛾0 for the same experiments as in Fig. 5.5.
Fitting linear functions to the points with ̄𝛾0 < 12, we can estimate the parameters of Eq. (5.4).

Assuming that ̄𝛾onset is equal to ̄𝛾sim,osci, from the slopes of the linear fits we can estimate
̄𝛾sim ≈ 50 and ≈ 150 for the small and large beads, respectively. If these values are conditioned

by the shear-induced migration of particles toward the gap center, then we must also add
the strain induced in the suspension as it was injected into the channel for first time. As
explained in Sec. 2.4, there are some mixers before the channel inlet that should ensure a well
mixed suspension entering the channel. Then, the suspension must reach the position at half
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the channel length 𝐿, where the observation is performed. The experiments with the small
particles were performed using a channel of dimensions 𝐿 = 200mm and 2𝑏 = 1mm, and for
the large particles, 𝐿 = 150mm and 2𝑏 = 2mm. Adding a strain (𝐿/2)/𝑏 to each estimation,
we obtain ̄𝛾sim ≈ 250 and ≈ 225 for the small and large beads, respectively. The values are
similar now, but a more thorough validation of this correction will require experiments with
different bulk volume fractions for both particle types.

On the other hand, while both values are similar, they are significantly below what can be
estimated from the literature. For example, from the experiments with steady channel flow
of Rashedi et al. (2020), we may estimate ̄𝛾sim ≈ 2000 (see Sec. 1.6.2 for our discussion), from
the experiments with oscillatory pipe flow of Snook, Butler, and Guazzelli (2016), ̄𝛾sim ≈ 850,
and from measurements of 𝐷̂ of D. Leighton and Acrivos (1987a), ̄𝛾sim ≈ 1150. One simple
explanation is that ̄𝛾onset actually corresponds the onset of the instability, which might occur
before the suspension reaches its steady state after a strain ̄𝛾sim,osci, as assumed by the previous
examples. In the following section, we will investigate the dependence of these parameters
on the mean particle volume fraction.

5.3. Influence of the particle volume fraction

Besides the previously introduced experiments with bulk volume fraction 𝜙bulk = 0.40, we
also performed other sets of experiments varying both the oscillation amplitude and the bulk
volume fraction, while keeping the same type of particles (2𝑎 ≈ 41 µm) and the same channel
(2𝑏 = 1mm). Figure 5.8 shows plots of 𝐴𝑉𝑦

versus ̄𝛾 for different oscillation amplitudes
̄𝛾0 (inside each plot), and for different 𝜙bulk (changes with the plot). The first plot shows

the same curves as Fig. 5.3 for completeness. All of them are qualitatively similar in the
sense that 𝐴𝑉𝑦

starts to increase significantly above a certain strain ( ̄𝛾onset), until it reaches
a maximum at another accumulated strain. Notice that the strains required for this process
to develop increase significantly as the volume fraction decreases (look at the horizontal
axes). This is natural if we consider that as the particle concentration decreases, the rate
of particle interactions will also decrease, slowing down all the processes driven by them.
In all these curves, 𝐴𝑉𝑦

has a similar initial value (≈ 0.003), but its maximum depends on
both the oscillation amplitude and the bulk volume fraction 𝜙bulk, generally decreasing for
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Figure 5.8: Variation of 𝐴𝑉𝑦 = 𝑉𝑦,cen,𝑎𝑐/𝑉avg as a function of accumulated strain ̄𝛾 = 𝑡 𝑉s/𝑏. Each
plot corresponds to a different bulk volume fraction (0.2 ≤ 𝜙bulk ≤ 0.4) and, inside each, curves
for experiments with different oscillation amplitudes ̄𝛾0 are shown. Other parameters: 2𝑎 ≈ 41 µm,
2𝑏 = 1.0mm.
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smaller 𝜙bulk’s.

Figure 5.9(a,b) shows the accumulated strain ̄𝛾onset required for the onset of the instability
as a function of the oscillation amplitude ̄𝛾0 for each set of experiments (different 𝜙bulk). For
each set of points, we see again that the onset strains display a minimum in the amplitude
range 5 < ̄𝛾0 < 15, and increase outside this range, except for 𝜙bulk = 0.20 (orange points),
where we do not have enough measurements outside this range to validate the tendencies.
It is also clear that the onset strain increases greatly as the volume fraction decreases. For
example, at 𝜙bulk = 0.25, the onset strain is at least ≈ 500, while for 𝜙bulk = 0.40 all tested
oscillation amplitudes already saturated after this much accumulated strain (see Fig. 5.8a).
For these reasons, experiments with small volume fractions and/or oscillations amplitudes
must have very long durations (sometimes several hours), and before an increase in the
transverse velocities is observed, it is impossible to know when (or if) the flow will become
unstable.
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Figure 5.9: Parameters estimated from the curves in Fig. 5.8 to characterize the instability growth
versus the oscillation amplitude ̄𝛾0 (horizontal axis) and versus the bulk volume fraction 𝜙bulk (different
symbols and colors). a) ̄𝛾onset with a linear vertical scale. b) ̄𝛾onset with a logarithmic vertical scale
(same symbols). c) ̄𝛾0/ ̄𝛾onset and linear fits for small oscillations. d) 𝜎 ̄𝛾0 and linear fits for small
oscillations.
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Figures 5.9(c,d) show ̄𝛾0/ ̄𝛾onset and 𝜎 ̄𝛾0 versus ̄𝛾0 for the same experiments. Both figures
are very similar to each other, and the trends in the sets of points for 𝜙bulk ≥ 0.25 are all
qualitatively similar to those for 𝜙bulk = 0.40 (blue circles), already discussed in the previous
section. The main difference between them is the scale of the values, which decreases as 𝜙bulk

decreases. From the linear fits (black lines), we obtain again values for ̄𝛾c, 𝜎i, and 1/ ̄𝛾sim.

In Fig. 5.10a, we show ̄𝛾c as a function of 𝜙bulk, obtained from linear fits of ̄𝛾0/ ̄𝛾onset
(Fig. 5.9c) and 𝜎 ̄𝛾0 (Fig. 5.9d) versus ̄𝛾0. Both sets of points have similar values and ten-
dencies. The values are of the order of one and decrease with the volume fraction, similar to
the local strains required for the reorganization of the microstructure and also to the critical
oscillation amplitude observed in previous works (see Sec. 1.7), both shown in Figs. 3.19b.
A more direct comparison with those values is complicated by the fact that the local strain
in our system is inhomogeneous across the channel gap, and ̄𝛾 is a global measure of accu-
mulated strain, proportional to the average one. That being said, in Fig. 3.20 we have seen,
for experiments with 𝜙bulk = 0.40 and the larger particles, that the reorganization of the
microstructure is almost complete across the gap after a global strain ̄𝛾 ≈ 2 is applied. The
similarity of this value with ̄𝛾c, agrees with our previous interpretation that the evolution of
the instability (onset and growth) occurs mostly after the particle microstructure has built
up again following each flow reversal. If the linear fits shown in Figs. 5.9(c,d) truly model
the underlying dynamic of the suspension, then ̄𝛾c can be interpreted as a critical strain that
must be surpassed between flow reversals for the suspension to evolve irreversibly and the
instability to develop.

0

1

2

3

0 0.1 0.2 0.3 0.4 0.5

𝑏/𝑎 = 24

From fits of 𝛾̄0𝜎From fits of 𝛾̄0/𝛾̄onset

𝛾 c

𝜙bulk

0

0.01

0.02

0.03

0 0.1 0.2 0.3 0.4 0.5

𝑏/𝑎 = 24

𝜎i1/𝛾̄sim

𝜙bulk

Figure 5.10: Parameters obtained from the linear fits in Figs. 5.9(c,d) as functions of the bulk
particle volume fraction 𝜙bulk. a) Critical oscillation amplitude ̄𝛾c. b) Intrinsic growth rate 𝜎i and
parameter 1/ ̄𝛾sim possibly related to the shear-induced migration.
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Figure 5.10b, shows 𝜎i and 1/ ̄𝛾sim as a function of 𝜙bulk, each point having been obtained
from the fitted slopes in Figs. 5.9(c,d). The first variable is an effective growth rate after a
strain ̄𝛾c has occurred since the last flow reversal (see Sec. 5.2.1). The second, although not
strictly a growth rate, provides information about the rate at which the process(es) occurring
before the onset of the instability develop (see Sec. 5.2.2). The fact that both sets of values
are similar could be coincidental, but the approximately linear dependence of both with the
𝜙bulk is probably indicative of the influence of particles interactions in the overall development
of the instability.

To conclude, we have seen that the perturbations induced by the instability become
apparent above a global strain ̄𝛾onset and, then, grow by a factor 𝜎 per unit of strain, until
there is a saturation. If we consider that ̄𝛾onset and 1/𝜎 are characteristic strain scales for
processes happening respectively before and after the onset, then, Figs. 5.9(c,d) makes clear
that both scales are similar in their values and variations with respect to 𝜙bulk and ̄𝛾0. This
is logical given that all irreversible processes in non-Brownian suspensions at Re ≈ 0 seem to
be driven by same microscopic mechanism: contact interactions between particles. When the
particle concentration (i.e. 𝜙bulk) is increased, the frequency of these interactions increases
and the instability develops faster (smaller ̄𝛾onset, larger 𝜎). On the other hand, after each flow
reversal and until a strain ̄𝛾𝑐 ≈ 2 is accumulated, the effects of contacts may be negligible
(or greatly reduced) and the system is stable (no transverse motions of the particles) if
the strain between reversals ̄𝛾0 is below ̄𝛾𝑐. At large oscillation amplitudes ( ̄𝛾0 ≳ 14), the
number of reversals ̄𝛾onset/ ̄𝛾0 before the onset of the instability seem to more or less plateau,
suggesting that each reversal (or oscillation) makes a similar contribution the development
of the instability, regardless of the how much straining each oscillation induces. Accordingly,
in the limit of a steady flow ( ̄𝛾0 → ∞), the system should be stable since no reversals occur.

5.4. Influence of the Reynolds number

In this section, we vary the Reynolds number of the channel flow, Re = 𝑉s 𝑏 𝜌𝑓/𝜂𝑓 , by changing
different experimental parameters. First, we performed experiments for different surface
average velocities 𝑉s, while simultaneously adjusting the period 𝑇 to keep the oscillation
amplitude ̄𝛾0 = 𝑇 𝑉s/(2𝑏) constant. Second, we changed the suspending fluid to a Triton-
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based solution with a much larger viscosity 𝜂𝑓 (see a description of the fluid in Sec. 2.2.2).
We also modified the channel thickness 2𝑏, but those experiments will be discussed in Sec. 5.5
as 𝑏 has an influence on the instability’s wavelength and growth rate.

Figure 5.11a displays the curves 𝐴𝑉𝑦
( ̄𝛾) corresponding to experiments with different values

of 𝑉s. While the Reynolds number changes by more than an order of magnitude (from 0.05 to
0.8), the curves present a good overlap, confirming that the normalization of the transverse
velocities and the time by the mean velocity is appropriate.3 There are some small differences
between the curves, but they do not display any trend and they are similar in scale (along both
axes of the plot) to those seen between repetitions of experiments with the same parameters.
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Figure 5.11: Amplitude 𝐴𝑉𝑦 of the transverse velocity perturbation as a function of the accumulated
strain ̄𝛾 for experiments with different Reynolds numbers, but similar regarding oscillation amplitude,
particle concentration, and channel and particle size. a) 𝜂𝑓 ≈ 7.6mPa s, 0.31mm/s ≤ 𝑉s ≤ 5.0mm/s,
̄𝛾0 = 10.0, 𝜙bulk = 0.3, 2𝑏 = 1mm, 2𝑎 ≈ 41 µm. b) 𝜂𝑓 ≈ 3.5Pa s, 𝑉s = 0.12mm/s, ̄𝛾0 = 8.5,

𝜙bulk = 0.3, 2𝑏 = 0.84mm , 2𝑎 ≈ 41 µm.

In order to do a more stringent test, we performed experiments using a Triton-based solu-
tion with ≈ 500 times the viscosity of the previous thiocyanate-based one. In Fig. 5.11b, we
present one experiment with Re three orders of magnitude smaller that the smaller one in the
previous figure (left). Again, we see a clear increase of the transverse velocities (characterized
by 𝐴𝑉𝑦

) reaching a maximum value 𝐴𝑉𝑦
≈ 0.017 similar to the previous one after an accumu-

lated strain ̄𝛾 ≈ 600, also similar. The only notable difference is the larger initial value of 𝐴𝑉𝑦

(0.007 vs 0.002). The images from this experiment display the particles as blurry dots because
we could not match the index of refraction between the particles and the Triton mixture as
well as with the thiocyanate one used in the previous experiments. This mismatch probably

3All the velocities are normalized by the average longitudinal velocity 𝑉avg, measured at each time from the
velocity profile 𝑉𝑥(𝑦, 𝑡). Although this average velocity has some slight variations with time (see Sec. 5.6), it is
proportional to 𝑉s = 𝑄0/𝑆, where 𝑄0 is the flow rate configured for the pump and 𝑆 is the area of the channel
cross section.
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resulted in a less precise detection of the particles, and introduced artificial fluctuations that
increase the noise level in our measurements of the transverse velocities.

Besides the amplitude, we also verified that the transverse velocities form a periodic
pattern, alternating in sign along the channel length. This pattern has a wavelength 𝜆
between 6 𝑏 and 8 𝑏, similar to the previously shown results.

In summary, we have seen that even when the Reynolds number is reduced by four orders
of magnitude (respect to the experiments in the previous sections), a periodic secondary flow
structure with similar properties is still observed, thus, we conclude that this flow instability
is not driven by inertial effects.

5.5. Influence of the channel thickness

In our experiments, the only length scales seemly relevant are the particle radius 𝑎 and
the channel half thickness 𝑏, making 𝑏/𝑎 an important nondimensional parameter. Previous
works have shown that particle diffusion and particle fluxes are expected to be proportional
to the square of the particle radius 𝑎 (see Sec. 1.6). Then, changes in the macroscopic particle
distribution induced by shearing the suspension, should develop with characteristic strains
proportional to (𝑏/𝑎)2, as proposed for the onset of the instability in Sec. 5.2.2. Somewhat
to our surprise, in Fig. 5.5 we have seen that experiments with our larger beads (2𝑎 ≈ 85 µm)
have characteristic deformations for the development of the instability significantly larger than
the smaller beads (2𝑎 ≈ 41 µm), even though both sets of experiments have similar values
of 𝑏/𝑎 (≈ 24). As mentioned before, one possible explanation is that the larger particles
have a smaller surface roughness (relative to their sizes) or that short range repulsive forces
make direct contacts between them less frequent. Both propositions have in common the
introduction of an additional length scale which may differ between the particle types, but
which would be too small to be observed in our experimental device. In this section, we study
the influence of the variations of 𝑏 while using only the smaller (2𝑎 ≈ 41 µm) beads.

Larger channel thickness

We performed experiments with 𝜙bulk = 0.4 and a channel with a thickness 2𝑏 = 2.1mm
(width 𝑊 = 10mm), roughly twice the size of that used in Secs. 5.1 and 5.2. The flow rate



A. A. García − Doctoral thesis − December 15, 2025 Page 119 of 156

was doubled in order to keep the surface average velocity similar at 𝑉s = 1.30mm/s. In
general, we observe the same behavior: after a number of oscillations a secondary velocity
field with recirculation rolls appears. The wavelengths measured in units of 𝑏, remain similar
around 7 𝑏.

Figure 5.12a shows the wavelength 𝜆 divided by 𝑏 versus the oscillation amplitude ̄𝛾0 for
three sets of experiments: small beads and 𝑏/𝑎 = 24 (Sec. 5.2), small beads and 𝑏/𝑎 = 51
(this section), and large beads and 𝑏/𝑎 = 24 (Chapter 4). All of them with 𝜙bulk = 0.40. The
points collapse quite well, with a trend toward larger wavelengths as the oscillation amplitude
increases. Plots for the experiments with smaller particle concentrations (0.20 ≤ 𝜙bulk ≤ 0.35,
not shown here) display similar values and trends.
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Figure 5.12: a) Normalized wavelength 𝜆/𝑏 as a function of the oscillation amplitude ̄𝛾0 for three
sets of experiments with different particle diameters 2𝑎 or channel thicknesses 2𝑏. b) Amplitude 𝐴Vy
of the transverse velocity perturbation as a function of the accumulated strain ̄𝛾 for experiments with
different oscillation amplitudes ̄𝛾0 with ratio 𝑏/𝑎 = 51 (red squares in plot a).

In Fig. 5.12b, we see the plots of 𝐴𝑉𝑦
( ̄𝛾) for 𝑏/𝑎 = 51. There, the peak values of 𝐴𝑉𝑦

and
the strains ̄𝛾 at which those are reached are about twice as large as those seen in Fig. 5.3,
using a channel with 2𝑏 = 1.0mm (𝑏/𝑎 = 24) and all other parameters equal. From these
curves, we estimated the accumulated strain ̄𝛾onset required for the onset of the instability,
and its growth rate 𝜎, following the same procedure used in Sec. 5.2.

In Fig. 5.13a, we see that ̄𝛾onset is between three and four times larger for 𝑏/𝑎 = 51 than
for 𝑏/𝑎 = 24, except for oscillation amplitudes smaller than ̄𝛾0 ≈ 6, where the trends is
unclear. From the discussion at the beginning of this section, we expected ̄𝛾onset to scale as
(𝑏/𝑎)2, and although the results are not too far from that [(𝑏/𝑎)2 changes by a factor 4.5], it
is unclear why the points for 𝑏/𝑎 = 51 show a tendency to increase with ̄𝛾0 in a range where
the points for 𝑏/𝑎 = 24 remain more or less flat.



A. A. García − Doctoral thesis − December 15, 2025 Page 120 of 156

0

50

100

150

200

250

0 5 10 15 20 25

𝑏/𝑎 = 24
𝑏/𝑎 = 51

𝛾 o
ns

et

𝛾̄0

a

0

0.1

0.2

0.3

0 5 10 15 20 25

𝑏/𝑎 = 24
0.023 (𝛾̄0 -1.6)

𝑏/𝑎 = 51
0.015 (𝛾̄0 -0.7)

𝜎𝛾
0

𝛾̄0

b

Figure 5.13: Comparison of results between experiments with 𝑏/𝑎 = 51 and 𝑏/𝑎 = 24, for particles
with the same diameter 2𝑎 ≈ 41 µm. a) Strain ̄𝛾onset for the onset of the instability as a function of
the oscillation amplitude ̄𝛾0. b) 𝜎 ̄𝛾0 as a function of the oscillation amplitude ̄𝛾0. The linear fits for
low oscillation amplitudes correspond to Eq. (5.2).

Figure 5.13b shows 𝜎 ̄𝛾0 versus ̄𝛾0, and the corresponding linear fits for small enough oscil-
lations ( ̄𝛾0 < 14 for 𝑏/𝑎 = 24, ̄𝛾0 < 7.5 for 𝑏/𝑎 = 51). As explained in Sec. 5.2.1, the slopes of
these fits allow us to estimate an intrinsic growth rate 𝜎i, which is independent of the oscilla-
tion amplitude, while the position on the horizontal axis where the line crosses estimates ̄𝛾c,
the minimal oscillation amplitude required for the suspension to behave irreversibly, and thus,
for the flow to become unstable. Both sets of points present similar qualitative tendencies: a
linear increase at small amplitudes with plateau starting from a particular amplitude (≈ 14
for 𝑏/𝑎 = 24, and ≈ 7.5 for 𝑏/𝑎 = 51). In general, the plots give the impression that they
would overlap better if we multiplied ̄𝛾0 by a factor two in both axes and only for 𝑏/𝑎 = 51,
or almost equivalently, if we replaced ̄𝛾0 = 𝑇 𝑉s/𝑏 by just 𝑇 𝑉s. But then, one may wonder is
there is another, more appropriate, length scale to normalize macroscopic distances instead
of 𝑏. Like for the left figure, more experiments with different particle and channel sizes will
be required to better understand the scaling laws of these experiments.

Smaller channel thickness

We also performed experiments in a channel with a smaller thickness 2𝑏 = 0.51mm (same
width 𝑊 = 10mm) using the small beads (2𝑎 ≈ 41 µm). To our surprise, experiments with
𝜙bulk = 0.4 and 10.5 ≤ ̄𝛾0 ≤ 42.1 did not show clear signs of the instability, that is, 𝐴𝑉𝑦

does not increase significantly with the oscillations, and no periodic pattern is apparent in
the velocity field. This was so even after the suspension reached accumulated strains > 2000,
an order of magnitude larger than the values of ̄𝛾onset observed with larger channel gaps (see
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Fig. 5.9(a,b) for 2𝑏 ≈ 1mm, and Fig. 5.13a for 2𝑏 ≈ 2mm). On the other hand, experiments
with 𝜙bulk = 0.3 and 7.9 ≤ ̄𝛾0 ≤ 13.2 did show the characteristic increase of 𝐴𝑉𝑦

, but with
very small peak values of 𝐴𝑉𝑦

, as displayed in Fig. 5.14.
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Figure 5.14: Amplitude 𝐴Vy of the transverse velocity perturbation as a function of the accumu-
lated strain ̄𝛾 for experiments with a small channel thickness (2𝑏 = 0.5mm) and different oscillation
amplitudes ̄𝛾0.

One possible interpretation of these results is that at high confinements (small 𝑏/𝑎) and
large concentrations (large 𝜙bulk) the process responsible for the instability is hindered, pos-
sibly as a consequence of particle layering (Snook, Butler, and Guazzelli 2016) or some other
form of strong ordering which prevents the deformation of the central band into the wavy
pattern observed in Fig. 4.1.

5.6. Influence of the position of the observation plane across the

channel width

All the previous experiments were performed with the observation plane (the one illuminated
by the laser) near the center of the channel width 𝑊 (see Fig. 2.7). In order to test if
our results were influenced by the plane position, we performed a few experiments in other
positions. In Fig. 5.15a, we present the amplitude 𝐴𝑉𝑦

versus the accumulated strain ̄𝛾
for experiments that differ only by the distance 𝑧 of the observation plane from the lateral
wall. In the three cases, the instability appears and 𝐴𝑉𝑦

reaches a peak value for similar
accumulated strains, but the overall values of 𝐴𝑉𝑦

decrease as the wall is approached (smaller
𝑧). One possible factor to consider here is a modulation of the longitudinal velocity, that is,
the possibility of 𝑉𝑥 changing significantly with 𝑧.
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Figure 5.15: a) Amplitude 𝐴Vy of the transverse velocity perturbation as a function of the accumu-
lated strain ̄𝛾 for experiments with the observation plane at different distances 𝑧 along the channel
width, with 𝑧 = 0 and 𝑧 = 𝑊 = 10mm corresponding to the lateral walls. b) Average absolute lon-
gitudinal velocity 𝑉avg as a function of the accumulated strain ̄𝛾 for the same experiments. Common
parameters: 𝜙bulk = 0.4, 2𝑎 ≈ 41 µm, 2𝑏 = 2.1mm, 𝑉s = 1.3mm/s, ̄𝛾0 = 8.7.

Figure 5.15b shows plots of the average absolute longitudinal velocity 𝑉avg normalized by
𝑉s (same value in all three experiments) versus the accumulated strain. We observe here that
initially 𝑉avg is slightly smaller toward the lateral wall (𝑧 = 0) and, more importantly, that
the onset of the instability has a small but clear influence on 𝑉avg, increasing it near the wall
(𝑧 = 2 𝑏) and decreasing it near the center of the channel width (𝑧 = 5 𝑏 ≈ 𝑊/2). Note that
the variations of 𝑉avg with ̄𝛾 (i.e. time) are not significant enough to explain the much larger
(in proportion) variations of 𝐴𝑉𝑦

seen in Fig. 5.15a.
These variations of dynamic variables with the position across the channel width made

us wonder if there are three-dimensional characteristics of the flow which influence the onset
and development of the instability. In order to address this question, we proceeded to vary
the channel width 𝑊 as shown in the following section.

5.7. Influence of the channel cross-sectional aspect ratio

Zrehen and Ramachandran (2013) report experiments with a non-Brownian suspension steadily
flowing through a channel with square cross-section. They observe that an element of sus-
pension painted with dye follows a trajectory that departs from a straight line parallel to the
walls. They explain this behavior as a consequence of normal stress differences which induce
a secondary flow in the plane of the cross section (perpendicular to the main flow).

The above observations contrast with our secondary flow which is characterized by re-
circulation rolls in the flow-gradient plane, however, such effects could be simultaneously
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present in our experiments. Considering also our previous observation of a dependence of
our transverse velocity perturbations on the position across the channel width, we wanted to
know if the instability under study here is adequately described as a two-dimensional flow
between two very large planes (𝑊 ≫ 2𝑏), or whether variations along the third dimension
(width, 𝑧 position) should be taken into account.

We started by doing experiments in a channel with a square cross section (2mm × 2mm),
observing no increase in the transverse velocities even after accumulating large strains (>
3700, 𝜙bulk = 0.3 and 0.4, 2𝑎 ≈ 41 µm, ̄𝛾0 = 9.3). Then, in order to better understand the
effect of the channel cross sectional aspect ratio 𝑊/(2𝑏), we made channels with thickness
2𝑏 = 1mm and a range of widths 2.7mm ≤ 𝑊 ≤ 11mm (see Table 2.1), and performed
experiments with 𝜙bulk = 0.4 and large oscillation amplitudes ( ̄𝛾0 ≫ ̄𝛾c, see Secs. 5.2.1
and 5.2.2) in each channel. Figure 5.16 shows the results: the curves 𝐴𝑉𝑦

( ̄𝛾) on the left, and
the accumulated strains ̄𝛾onset required for instability onset obtained from the curves, on the
right. Looking at the right plot, we see that the onset strain increases sharply as the aspect
ratio is reduced, possibly diverging around 𝑊/(2𝑏) ≈ 2. On the other hand, for aspect ratios
≳ 5, changing the aspect ratio does not have any significant effect.
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Figure 5.16: a) Amplitude 𝐴Vy of the transverse velocity perturbation as a function of the accu-
mulated strain ̄𝛾 for experiments with different channel aspect ratios 𝑊/(2𝑏) and similar oscillation
amplitudes 15 < ̄𝛾0 < 20. b) Accumulated strain ̄𝛾onset required for the onset of the instability as a
function of the channel aspect ratio 𝑊/(2𝑏) for the same experiments as in plot a. Other parameters:
𝜙bulk = 0.4, 2𝑎 ≈ 41 µm, 2𝑏 = 1mm, 15 < ̄𝛾0 < 20.

We conclude from this that our instability is hindered by the proximity of the lateral walls
(parallel to the observation plane), but may be described as a mostly two-dimensional effect
in the flow-gradient plane when lateral walls are far enough [𝑊/(2𝑏) > 5].

To characterize better the effect of a reduction of the aspect ratio, we performed exper-
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iments varying the oscillation amplitude ̄𝛾0 for one small aspect ratio [𝑊/(2𝑏) = 3.2], and
compared the results with our previous experiments with𝑊/(2𝑏) = 11. Figure 5.17 shows the
results: the new curves 𝐴𝑉𝑦

( ̄𝛾) on the left, and plots of 𝜎 ̄𝛾0 versus ̄𝛾0 comparing both sets of
experiments, on the right. Remember that the linear fits of the right plot give us estimations
of ̄𝛾c, a critical or threshold amplitude for the instability, and of 𝜎i, its intrinsic growth rate
(see Sec. 5.2.1). Comparing the experiments with 𝑊/(2𝑏) = 3.2 to those with 𝑊/(2𝑏) = 11,
in Fig. 5.17b, we observe first that the intrinsic growth rate is reduced approximately in half
(from 0.023 to 0.012) and, second, that the critical amplitude increases significantly from 1.6
to 4.4. Both effects make the instability weaker and more difficult to observe.
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Figure 5.17: a) Amplitude 𝐴Vy of the transverse velocity perturbation as a function of the ac-
cumulated strain ̄𝛾 for experiments with a small channel aspect ratio [𝑊/(2𝑏) = 3.2] and different
oscillation amplitudes ̄𝛾0. b) Variation of 𝜎 ̄𝛾0 as a function of the oscillation amplitude ̄𝛾0. The linear
fits for low-enough oscillation amplitudes correspond to Eq. (5.2). Other parameters: 𝜙bulk = 0.4,
2𝑎 ≈ 41 µm, 2𝑏 = 1mm.
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Chapter 6

Conclusions and perspectives

6.1. Summary

In this thesis, we performed experiments with concentrated suspensions of PMMA spheres in
Newtonian fluids oscillating inside narrow channels, making observations at the particle scale
in order to capture trajectories of a larger number of them and, then, using this information
to infer both microscopic and macroscopic properties, such as the particle pair distribution,
and concentration and velocity fields.

One of the main results of our work is a thorough characterization of a flow instability
that arises during oscillations and induces a secondary flow superimposed on the primary
oscillatory motion. The cumulative effect of this secondary flow can modulate the particle
concentration along the channel into a periodic pattern of stripes orthogonal to the flow
direction (see Fig. C.1), seen in experiments performed previously in our laboratories (Roht
2017).

In a typical experiment, the initial particle distribution is not uniform, instead the local

𝑥

𝑧

𝑊
=

10
m
m

Figure 6.1: Typical pattern of stripes perpendicular to the main flow direction (𝑥) observed in exper-
iments with oscillatory flows of suspensions inside Hele-Shaw cells. The varying intensity corresponds
to different particle concentrations. More details in Sec. 1.8.
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volume fraction 𝜙 is larger in the center of the thickness (𝑦 = 0) than near the walls (𝑦 = ±𝑏),
as a consequence of the shear-induced migration of particles occurring during the preliminary
setup (e.g. filling the channel). The migration may continue during the first oscillations,
increasing even more the volume fraction 𝜙cen in the center of the gap, as shown by the green
curve in Fig. C.3. During this time ( ̄𝛾 ≲ 200 in Fig. C.3), the local volume fraction 𝜙 varies
only across the thickness (𝑦 direction) with profiles 𝜙(𝑦) that increase from the walls to the
center, and the velocity field is mostly laminar (𝑉𝑦 ≈ 0, 𝑉𝑥 independent of 𝑥) with profiles
𝑉𝑥(𝑦) that become progressively more blunted in the center (compared to the parabolic profiles
of a Newtonian fluid) as the bulk volume fraction 𝜙bulk is increased, in agreement with other
authors (Lyon and Leal 1998a; Rashedi et al. 2020).

0.9

1

1.1

1.2

1.3

0 200 400 600 800 1000 0

0.01

0.02

0.03

0.040 10 20 30

𝐴𝑉𝑦
= 𝑉𝑦,cen,ac

𝑉avg

0.1 (𝐴𝜙 = 𝑦𝜙max,ac
𝑏 )

Migrat
ion

In
sta

bil
ity

𝜙cen
𝜙avg

Accumulated strain , 𝛾̄ = 𝑡𝑉s/𝑏

Number of oscillations , 𝑡/𝑇

Figure 6.2: Temporal evolution of three important variables tracking the state of the suspension
during the oscillations, for a typical experiment using the particles of diameter 2𝑎 ≈ 85 µm. Green
curve, left axis: ratio 𝜙cen/𝜙avg between particle volume fraction in the center of the channel gap
and the average across it. Purple curve, right axis: amplitude 𝑉𝑦,cen,ac of the perturbation in the
transverse velocity component normalized by the average longitudinal velocity 𝑉avg of the main flow.
Dashed orange curve, right axis: amplitude 𝑦𝜙max,ac of the deformation of the central band of high
particle concentration, normalized by the channel half thickness 𝑏 and multiplied by 0.1 to allow a
direct comparison with the 𝑉𝑦,cen,ac/𝑉avg. Note that 𝜙avg ≈ 𝜙bulk = 0.4, and 𝑉avg ≈ 𝑉s ∼ 1mm/s.
More details in Sec. 4.2.

Afterward, we observe the onset of the unstable behavior: a secondary flow appears, char-
acterized by recirculation cells of alternating directions along the channel length (𝑥 direction),
with a wavelength 𝜆 ≈ 7 𝑏 (see Fig. C.4). This secondary flow is present in addition to the
main oscillatory one which convects it back and forth, making it change its directions each
time the oscillatory flow reverses. We characterize its amplitude 𝐴𝑉𝑦

from measurements of
the transverse velocity component 𝑉𝑦 near the center of the gap, and observe that it increases
in time with an approximately exponential form until it saturates at values of the order of



A. A. García − Doctoral thesis − December 15, 2025 Page 127 of 156

−1

−0.5

0

0.5

1

−8 −6 −4 −2 0 2 4 6 8

2𝑏
=

2m
m

𝑦/
𝑏

𝑥/𝑏

Main flow

Figure 6.3: Velocity field corresponding to the secondary flow observed when the instability is fully
developed. It is one of the two components into which we separate the total velocity field, together
with the main laminar flow which points to the left at this time. More details in Sec. 4.1.

0.02 𝑉avg (see the purple curve in Fig. C.3).

In time, the accumulated effect of this flow changes the particle distribution, moving
particles out of the gap center (see the decrease of 𝜙cen/𝜙avg in Fig. C.3) and producing a
wave-like pattern in the volume fraction 𝜙 with the same wavelength 𝜆 (see Fig. C.5), and
which is also convected back and forth by the main flow. A study of the amplitude 𝐴𝜙 of this
pattern (see the dashed orange curve in Fig. C.3) shows an evolution in time nearly identical
(within a constant scale factor) to that of 𝐴𝑉𝑦

, corresponding to the secondary flow. One
difference can be observed shortly after a flow reversal: the pattern in 𝜙 is unaffected by it,
while the secondary flow changes directions and abruptly decreases its amplitude, eventually,
recovering its value from before the reversal after enough strain is accumulated. This latter
behavior is similar to those observed for the microstructure and the local shear rate after a
reversal.
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Figure 6.4: Wave-like pattern formed by particles (black disks) when the instability is fully developed.
Image taken from the experiment described in Sec. 3.1.

Further studies varying the experimental parameters (mainly 𝜙bulk and ̄𝛾0) showed that
the instability grows faster with increasing bulk volume fraction 𝜙bulk, suggesting that the
mechanism is related to irreversible particle interactions, almost certainly through solid con-
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tacts. On the other hand, as the strain amplitude ̄𝛾0 decreases, the instability grows progres-
sively more slowly, until a threshold amplitude ̄𝛾𝑐 ∼ 1 is reached. For ̄𝛾0 < ̄𝛾𝑐, the flow is
stable with no significant transverse velocities or variations of 𝜙 along 𝑥, in agreement with
the previously observed reversibility in suspensions under oscillations of small amplitude (see
Sec. 1.7.2). At the other extreme, for large enough amplitudes ̄𝛾0, the characteristic accu-
mulated strain ̄𝛾onset above which the instability becomes readily apparent increases with ̄𝛾0,
suggesting that steady flows ( ̄𝛾0 → ∞) are also stable.

Irreversible interactions between neighboring particles are known to induce an anisotropic
microstructure which has a strong influence in the suspension stresses and viscosity, and
which gets reorganized after each flow reversal (see Sec. 1.5). Since the instability may be a
consequence of the cumulative effect of such irreversible processes after several flow reversal,
we characterized the microstructure just before the onset of the instability, between successive
reversals and across the channel gap.

In the quasi-steady state reached before a reversal, we observed pair distribution functions
𝑔(𝑟𝑥, 𝑟𝑦) with a high probability of particle pairs nearly in contact (𝑟/𝑎 ≈ 2) except in the
extensional quadrants where the pairs are separating on average (see the first plot of Fig. C.6).
Our local measurements of 𝑔(𝑟𝑥, 𝑟𝑦) across the gap are in good agreement with measurements
obtained in uniform conditions by Blanc, Lemaire, et al. (2013), except near the wall and
near the gap center, where the respective effects of the confinement and of the very small
shear rate take precedence. After a flow reversal, the extensional quadrants change positions
and this structure gets reorganized into a horizontally mirrored one matching the new flow
direction (see Fig. C.6). This process occurs as the suspensions is strained with a local strain

𝑦/𝑏 ≈ 0.30, 𝜙 ≈ 0.45
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Figure 6.5: Pair distribution functions 𝑔(𝑟𝑥, 𝑟𝑦) at different instants before (first plot) and after
(other five plots) a flow reversal occurring when 𝛾 = 0, where 𝛾 is the strain accumulated locally at
the position 𝑦 of the center of the strip under consideration across the channel gap. The white arrows
indicate the local shear directions before and after the flow reversal. More details in Sec. 3.5.
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rate ̇𝛾 which increases from zero, at the gap center (𝑦 = 0), to a maximum near the walls
(𝑦 = ±𝑏).

Although the accumulated strain needed to reorganize the microstructure decreases with
the local volume fraction 𝜙, which in turns decreases toward the walls, the variations of the
̇𝛾 across the gap are much more important and, therefore, there is a transient state after a

flow reversal when the microstructure has fully reorganized near the walls but, near the gap
center, the process is still in progress. In the following section, we will discuss a possible
mechanism for the instability, leaving for a future work the full development of the ideas.

6.2. Discussion on the possible causes of the instability

From our experiments, we have found that the most relevant time scale corresponds to the
shearing of the suspension, with a characteristic time 𝑏/𝑉s. In Fig. 5.11a, we have shown
that plots of 𝐴𝑉 𝑦 versus ̄𝛾 = 𝑡𝑉s/𝑏 (tracking the development of the instability) are roughly
invariant with respect to variations of 𝑉s by a factor up to 16. The other time scale in our
experiments is the oscillation period 𝑇 : in this case, we have found that the characteristic
strain amplitude ̄𝛾0 = 𝑇𝑉s/(2𝑏) is the relevant parameter that accounts for variations in
the instability, when parameters other than 𝑇 and 𝑉s (e.g. 𝜙bulk) remain fixed. Therefore,
mechanisms that rely on external forces (e.g. gravity), thermal diffusion or inertial effects
are unlikely to explain our observations, as each would introduce a distinct time scale which
does not scale with 𝑉s and alter the good overlay seen in Fig. 5.11a. Given the possibility of
remanent effects from inertia, the influence of the latter was tested specifically in experiments
using a more viscous suspending fluid (Re ∼ 10−5 versus Re ∼ 0.1), observing again a good
overlay of the corresponding plots of 𝐴𝑉 𝑦( ̄𝛾) with those from the previous experiments (see
Fig. 5.11b).

A possible mechanism inspired by the co-extrusion of viscoelastic fluids

One important characteristic of our experiments is that the suspension viscosity 𝜂s and normal
stress differences (𝑁1 and 𝑁2) vary across the gap. Such inhomogeneities in the properties of a
fluid can be a source of instabilities and, in particular, flows where two different fluids are be-
ing co-extruded have been extensively studied (see, for instance, the review by Govindarajan
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and Sahu 2014).
Here, we will analyze the possible similarities between our experiments and pressure-

driven flows through pipes or channels with a sharp interface between two distinct fluids: one
at the core and, another, surrounding it and reaching to the walls, as illustrated by Fig. 6.6.
This configuration serves as a simplified model of our suspension flow: the core represents the
region where particle concentration approaches the jamming fraction and the shear rate is
nearly zero, while, outside, the concentration is more moderate and the shear rate increases
toward its maximum value near the walls. Now, we will consider under which conditions
(always with Re → 0) a straight interface between those two fluids may be unstable and
spontaneously acquire a form periodic in the flow direction (𝑥).

𝑥
𝑦

Surrounding fluid

Core fluid

Surrounding fluid

𝜂surr 𝑁 surr
1

𝜂core 𝑁 core
1

𝜂surr 𝑁 surr
1

−𝜕𝑥𝑝

Figure 6.6: Representation of two fluids (core and surrounding) being co-extruded between the walls
of either a circular pipe or a straight channel. The fluids may differ in their viscosities (𝜂core and 𝜂surr)
and first normal stress differences (𝑁 core

1 and 𝑁 surr
1 ).

Let us first consider instabilities induced purely by a jump in the viscosity. Both exper-
imental and theoretical studies show that the interface between two Newtonian fluids that
differ in their viscosity can be unstable (Hinch 1984; Than, Rosso, and Joseph 1987; d’Olce
et al. 2008), but linear stability analysis shows that the growth rate is proportional to the
Reynolds number (Re). As mentioned above, we did not observe significant variations in
the amplitude 𝐴𝑉𝑦

of the velocity perturbations as a function of the accumulated strain ̄𝛾 in
experiments changing Re by several orders of magnitude, nor in the growth rates calculated
from these curves. From this, we conclude that is is unlikely that inhomogeneities in the
viscosity alone do explain our observations. Then, we will turn our attention to the effect of
a jump in the first normal stress differences 𝑁1 and show that it can induce an instability in
the absence of inertia (Re = 0).

Hinch, Harris, and Rallison (1992) analyze an interfacial instability in the core-annular
flow of two viscoelastic fluids being co-extruded through a circular pipe. The diagram of
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Fig. 6.6 is also relevant here if we take 𝑥 to be axial direction and 𝑦, the radial one. The
reason to consider viscoelastic fluids is that they have a positive 𝑁1 that increases with the
elasticity and two different fluids may display a jump of 𝑁1 at the interface, but the proposed
mechanism also applies to other fluids with non-zero 𝑁1, such as particle suspensions. These
authors found that the interface is unstable if the core fluid is more elastic (𝑁 core

1 > 𝑁 surr
1 ) with

a (real) growth rate that is unaffected by a jump in the viscosity (𝜂core ≠ 𝜂surr) when inertial
effects are neglected (Re = 0). Moreover, they discuss both varicose and sinuous modes (see
Fig. 6.7) and show that the sinuous mode is always more unstable (i.e. larger growth rate).
This seems to agree qualitatively with our observations of a wave-like perturbation in the
particle distribution, though caution must be exercised since our geometry is different (a
straight channel instead of a circular pipe).

a b

Figure 6.7: Varicose (a) and sinuous (b) perturbation modes corresponding to the situation show in
Fig. 6.6.

For channel flows with a symmetric configuration like that show in Fig. 6.6, Khomami
and Ranjbaran (1997) observed experimentally that the interface between two co-extruded
polymer melts (which are viscoelastic) can be unstable with respect to small perturbations
with wavelengths of the order of the gap thickness. This instability occurs for several com-
binations of experimental parameters and, of particular interest to us, when the core fluid is
the more viscous and elastic (𝑁 core

1 > 𝑁 surr
1 ). Let us now consider when such a situation may

arise in suspensions.

Stability of pressure-driven flows of suspensions

In steady flows with a fully migrated volume fraction profile, the suspension viscosity 𝜂s will
be larger in the core (𝜂core > 𝜂surr) since 𝜂s increases with the local particle volume fraction 𝜙
(and 𝜙 increases toward the core), while the first normal stress difference 𝑁1 will be smaller
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there (𝑁 core
1 < 𝑁 surr

1 ) since 𝑁1 is negative (far enough from the walls) and decreasing with
𝜙 (see Fig. 1.4a). The previous works with viscoelastic fluid suggest that this configuration
should be stable, and that is indeed what is observed in the steady flow of suspensions through
pipes and channels at low Reynolds numbers (Hampton et al. 1997; Rashedi et al. 2020).

On the other hand, we must remember that both the viscosity and 𝑁1 depend on the local
microstructure of the suspension and, after a flow reversal, the microstructure gets reorganized
and the absolute values of both properties transiently decrease, with 𝑁1 possibly becoming
positive as shown in simulations (Bricker and Butler 2007; Chacko et al. 2018). One of our
key observations is that this process of microstructure reorganization occurs inhomogeneously
across the gap: after a characteristic strain ̄𝛾 ≈ 2 has accumulated since the reversal, the
reorganization is essentially complete near the walls but remains incomplete near the gap
center (see Fig. 6.8). This opens the possibility of an 𝑁1 profile which is, transiently, larger
(positive or less negative) near the “core” region of the gap than outside it.
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Figure 6.8: Microstructure anisotropy parameter 𝐴𝑥𝑦 from the center of the gap (𝑦/𝑏 = 0) to the
top wall (𝑦/𝑏 = 1), for different accumulated strains ̄𝛾 = 𝑡 𝑉s/𝑏 after a flow reversal (the numbers
shown in the legend). Reproduction of Fig. 3.20.

Then, we can imagine the following scenario for our experiments. After a reversal, the
viscosity and the absolute value of the normal stress differences (NSD) decrease everywhere
across the gap due to the particles losing contacts between them. In this state, the suspension
is roughly reversible: if the flow is reversed again now, the particles will simply retrace their
trajectories with negligible self-diffusivity (until new contacts form). This corresponds to
our observation that the instability does not occur for strain amplitudes ̄𝛾0 < ̄𝛾c ∼ 1 (see
Sec. 5.2.1 and Fig. 5.9). For larger strain amplitudes, the microstructure begins to get
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reorganized near the walls, where the shear rate is largest, inducing particle contacts and
recovering the quasi-steady viscosity and NSD’s there. It is during this transient state with
a partially reorganized microstructure that we imagine the instability growing, possibly as a
consequence of a value of 𝑁1 larger in a core region than outside. In Sec. 5.2.1, we propose as
a simple interpretation that the instability has an intrinsic growth rate 𝜎i which is constant
after a strain ̄𝛾𝑐 has been applied since the reversal and up to the next reversal. Then, in
Fig. 5.6, we see that this explains well our measured growth rate 𝜎 up to a strain amplitude
̄𝛾0,sat ≈ 15 for experiments with 𝜙bulk = 0.4. It is possible then that this is the strain required

for the quasi-steady state to be recovered all across the gap (or most of it), with the flow
becoming stable again. Finally, we may conjecture that, for large strain amplitudes ( ̄𝛾0 >
̄𝛾0,sat), an unstable perturbation grows during a strain ̄𝛾0,sat − ̄𝛾c and, then, the flow becomes

stable again, with the shear-induced migration possibly counteracting the perturbation for
very large strain amplitudes.

An additional factor to consider is the geometry of the channel, concretely, its cross section.
Oscillatory-flow experiments performed by Snook, Butler, and Guazzelli (2016) in a circular
pipe did not display any secondary flows or instabilities. Then, our experiments varying
the aspect ratio 𝑊/(2𝑏) of the channel (Sec. 5.7) show that instability appears only when
𝑊/(2𝑏) ≳ 2 and it is unaffected by the ratio when 𝑊/(2𝑏) ≳ 5, in particular, a channel with
a square cross seccion [𝑊/(2𝑏) = 1] did not display any growth in the transverse velocities.
Future studies will be needed to understand how the geometry of the channel affects the NSD
profiles and the instability mechanism proposed here.

6.3. Future work

The previous discussion prompts us to know more about the rheological properties (e.g. 𝜂s,
𝑁1) of the suspension across the channel gap and in between flow reversals. Measurements of
the normal stress differences (𝑁1 and 𝑁2) can be very difficult to accomplish, even in uniform
flows, but viscosity profiles 𝜂s(𝑦, 𝑡) may be calculated using simultaneous measurements of
the pressure gradient and the shear rate profile, as pointed out in Sec. 3.3. Since in channel
flows the pressure should vary mainly along the channel length, and in a roughly uniform way,
we may estimate the longitudinal pressure gradient 𝜕𝑥𝑝 using a differential pressure sensor
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connected by tubes near the inlet and outlet of the channel. Then, with access to 𝜂s(𝑦, 𝑡),
we may study its relaxation after reversal to determine more precisely when new contacts
between the particles are established. This is important since those contacts are the main
contribution to the normal stress differences in non-Brownian suspensions. Furthermore,
if a quantitative relation between 𝜂s and the microstructure parameter 𝐴𝑥𝑦 (introduced in
Sec. 3.5.3) can be established, knowledge of 𝐴𝑥𝑦 may be used to infer the suspension viscosity
solely from visual measurements.

Experimental measurements might be complemented by calculations of the suspension
stresses using one of the many suspension models which account for the microstructure and
its variations. For instance, the model proposed by J. J. J. Gillissen and H. J. Wilson (2019)
captures the influence of the microstructure in the suspension rheology with a second-order
fabric tensor which varies in time depending on the components of the local strain-rate tensor.
Their calculations show a transient decrease of the viscosity after reversal in qualitative
agreement with experiments like those of Fig. 1.8a, and their model predicts normal stress
differences𝑁1 and𝑁2 that also decrease in magnitude after reversal. A study of the oscillatory
channel flow using such a model would allow us to estimate 𝑁1 across the gap and in between
reversals or, more ambitiously, to perform a linear stability analysis of the flow.

Finally, one of the original motivations for the current work was the study of solute
dispersion in suspensions undergoing oscillatory flows (Roht 2017). In uniform oscillatory
shear flows, Souzy, Pham, and Metzger (2016) found that both the diffusivity of a blob of dye
and the self-diffusivity of the particles increase with the strain oscillation amplitude, with
a threshold value ≈ 2 which separates a reversible regime with small diffusivities from an
irreversible one with large diffusivities. However, in channel flows, inhomogeneities of shear
rate and particle concentration are expected to produce spatial variations of both diffusivities.
Furthermore, the onset of the instability introduces recirculation cells in the flow which can
enhance the mixing of fluids at low Reynolds numbers, for instance, inside microchannels.
Performing experiments with a blob of dye (or another inhomogeneous dye distribution) in
the suspending fluid will enable us to determine the dye dispersion before and after the onset
of the instability.
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Appendix A

Optical system used to generate the

laser sheet

We describe here the system of lenses used to shape the laser beam into a plane sheet with
a thickness smaller than the particles. See Fig. A.1 for reference.1
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Figure A.1: Schematic view of the optics used to shape the laser beam into a plane sheet. The top
part shows a view of the plane 𝑦𝑧 while, the bottom part, of the plane 𝑦𝑥. Directions 𝑥, 𝑦, and 𝑧
correspond respectively to the channel length, thickness, and width (see Fig. C.2). Both use the same
scale, though some distances may be exaggerated with respect to the real ones.

1We thank F. Zaldivar from the Laboratorio de Haces Dirigidos (FI-UBA, Argentina) for the initial design
that lead to this optical system.
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First, the collimated laser beam of diameter 𝑆𝐿 ≈ 3mm reaches a convergent spherical
lens with a focal length 𝑓𝑠 = 25.4mm. At a slightly larger distance 𝐿𝑠𝑝, a Powell lens is
placed. Powell lenses are laser line generators, designed to work with an incoming beam of
diameter 𝑆𝑃 (0.8mm for our lens) and stretch them along one direction (𝑥 in this case) with a
fan angle Θ (30º in our case). The resulting line (as seen when projected on a wall) will have
an approximately uniform intensity along its length. If the incoming beam has a diameter
larger or smaller than 𝑆𝑝, the light intensity will be more concentrated near the extremes or
the center, respectively. In our setup, we set the distance 𝐿𝑠𝑝 such that the divergent beam
coming from the spherical lens reaches the Powell lens with the right diameter:2

𝜃𝑠 ≈
𝑆𝐿
𝑓𝑠

= 𝑆𝑃
𝐿𝑠𝑝 − 𝑓𝑠

⇒ 𝐿𝑠𝑝 = 𝑓𝑠(1 + 𝑆𝑃/𝑆𝐿) ≈ 32mm. (A.1)

In practice, we adjusted the position of the Powell lens until the uniformity of the illumination
was deemed optimal.

Going forward, the light reaches a cylindrical lens with focal length 𝑓𝑐 = 25.0mm that
focuses it only along the direction 𝑧, reducing the laser sheet thickness to 𝑆. Due to diffraction,
a beam cannot be focused to zero thickness, instead its minimum thickness 𝑆 (at the focus
point) is related to the full-angular width 𝜃𝑐:3

4𝜆laser
𝜋𝑆 ≈ 𝜃𝑐 ≈

𝑆𝑐
𝐿𝑐𝑐

, (A.2)

where 𝑆𝑐 is the thickness of the beam incident on the lens. The thickness 𝑆 is approximately
constant along a length two times the Rayleigh range

𝑍𝑅 ≈ 𝜋𝑆2

4𝜆laser
. (A.3)

Since we desire a uniform thickness of the laser sheet over the span of the channel gap 2𝑏, we
need 2𝑍𝑅 ≥ 2𝑏 and, consequently, the minimum thickness of the laser sheet is

𝑆 ≈ √4𝑏𝜆laser/𝜋. (A.4)
2A more sophisticated setup would include two additional lenses before and after the Powell lens to ensure

a collimated incoming beam of the right diameter, but this would make the setup far more complex and the
possible advantages were deemed negligible.

3Eugene Hecht, “Optics”, 4th edition, 2002. Chapter 13, section 13.1.3 .
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Two important relations become evident from the previous equations. First, the size of
the region we want to illuminate (in this case the channel gap 2𝑏) sets a lower bound on the
sheet thickness 𝑆. Second, and maybe counterintuitively, we need to increase the thickness
𝑆𝑐 of the beam incident on the cylindrical lens to reduce the final thickness 𝑆.

For a given thickness 𝑆, the required separations 𝐿𝑠𝑐 between the lens, and between the
cylindrical lens and the channel 𝐿𝑐𝑐 can be calculated using

𝜃𝑠 ≈
𝑆𝐿
𝑓𝑠

= 𝑆𝑐
𝐿𝑠𝑐 − 𝑓𝑠

, (A.5)
1
𝑓𝑐

= 1
𝐿𝑠𝑐 − 𝑓𝑠

+ 1
𝐿𝑐𝑐

, (A.6)

and Eq. A.2, obtaining

𝐿𝑐𝑐 ≈ 𝑓𝑐(1 + 𝜃𝑠/𝜃𝑐), (A.7)

𝐿𝑠𝑐 ≈ 𝑓𝑠 + 𝑓𝑐(1 + 𝜃𝑐/𝜃𝑠), (A.8)

𝜃𝑐/𝜃𝑠 ≈
4𝜆laser
𝜋𝑆

𝑓𝑠
𝑆𝐿

= 2√𝜆laser
𝜋𝑏

𝑓𝑠
𝑆𝐿

(A.9)

Finally, with the channel positioned at a distance 𝐿𝑠𝑐 + 𝐿𝑐𝑐 − 𝐿𝑠𝑝 from the Powell lens, the
laser line will reach the first with a length

𝐿𝑙𝑙 ≈ Θ(𝐿𝑠𝑐 + 𝐿𝑐𝑐 − 𝐿𝑠𝑝). (A.10)

For a channel gap 2𝑏 = 2mm, the smallest thickness 𝑆 ≈ 26µm can be obtained with
separations 𝐿𝑠𝑐 ≈ 56mm and 𝐿𝑐𝑐 ≈ 140mm. Notice that these calculations require to know
the beam diameter 𝑆𝐿 of the laser utilized. In practice, we started from an estimation and
then adjusted the distances 𝐿𝑠𝑐 and 𝐿𝑐𝑐 until the best visualization of the particles was
achieved. For a gap 2𝑏 = 1µm, the smallest thickness is 𝑆 ≈ 18µm. As explained in the
main text, these values impose a lower limit to the particle size that can be visualized without
excessive overlaps between them.
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Appendix B

Details of the data analysis

B.1. Determination of the onset and saturation accumulated strains

We introduced in Chapter 4 the quantity 𝐴𝑉𝑦
, defined as the ratio of 𝑉𝑦,cen,ac and 𝑉avg.

The first is a velocity perturbation amplitude calculated from the autocorrelation of the
transverse velocities in the gap center (see Secs. 2.7.4 and 4.2), and the second is the average
of the longitudinal velocity profile 𝑉𝑥(𝑦) (see Sec. 3.2.1). Both quantities are calculated
instantaneously from the tracked particles in each video frame and, then, averaged in time
during the last part of each half cycle, when dynamic quantities become approximately steady
before the next reversal (see Secs. 3.2 and 4.3). Then, we average the values of successive half
oscillations to obtain one value for each oscillation, taking care to use the absolute value of 𝑉avg

so that the values do not cancel out due to the oscillatory nature of the flow (see Sec. 2.7.3).
This way we obtain positive values for 𝑉𝑦,cen,ac and 𝑉avg for each oscillation, and use them to
track the development of the instability. The ratio of both quantities gives us information
about the magnitude of the perturbations introduced by the instability irrespectively of the
main flow velocity, which as we have seen in Sec. 5.4, most likely acts just as a multiplier of
all the velocities.

On the first row of Fig. B.1, we show a selection of plots of 𝐴𝑉𝑦
versus the accumulated

strain ̄𝛾 (blue solid lines). In Chapter 5, we compare such plots for a wide range of different
experimental parameters and, in order to do so more effectively, we identify in each plot
three stages: before the instability, instability growth, and saturation or non-linear behavior.
Here we assume that like for other hydrodynamic instabilities, the process we study here



A. A. García − Doctoral thesis − December 15, 2025 Page 139 of 156

involves a sustained amplification of perturbations already present in the system, but initially
indistinguishable from noise. Usually a linearization of the corresponding equations leads to
the calculation of a growth rate that depends on the harmonic mode considered for the initial
perturbation, and the perturbation observed in practice corresponds to the mode with the
largest positive growth rate. Our study being purely experimental, we do not have an analytic
growth rate function to consider, but given that we observe a well-defined wave length for the
perturbations (see Sec. 4.1) and that the plots 𝐴𝑉𝑦

( ̄𝛾) present what looks like an exponential
growth before the saturation, then we proceed with an analysis looking for intervals with
constant growth rate.
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Figure B.1: Plots of 𝐴𝑉𝑦 = 𝑉𝑦,cen,ac/𝑉avg versus ̄𝛾 = 𝑡 𝑉s/𝑏 for three example experiments (each
columns) in linear (top row) and logarithmic (bottom row) vertical scales. The experiments were
chosen to give the reader a general idea of how well the function exp(𝑓) (Eq. B.1, black dashed lines)
fits the data (blue solid lines). a,d) Curve ̄𝛾0 = 7.0 from Fig. 5.3a. b,e) Curve ̄𝛾0 = 3.5 from Fig. 5.8c.
c,f) Curve ̄𝛾0 = 10.0 from Fig. 5.17a.

In order to identify the time intervals during which the growth is exponential, we look for
a linear relation between 𝐴𝑉𝑦

and ̄𝛾 in semilog plots likes the those shown in the second row
of Fig. B.1 (blue solid lines). All the curves display roughly the same behavior: an initial
lapse with more or less flat values, then a linear increase until the tendency changes, with
the curve becoming flatter. To robustly separate these stages and obtain a growth rate, we



A. A. García − Doctoral thesis − December 15, 2025 Page 140 of 156

perform a non-linear fit1 of the following piecewise function to the data points of log(𝐴𝑉𝑦
):

𝑓( ̄𝛾) =

⎧{{
⎨{{⎩

𝐿0 ̄𝛾 ≤ ̄𝛾onset
𝐿0 + 𝜎( ̄𝛾 − ̄𝛾onset) ̄𝛾onset ≤ ̄𝛾 ≤ ̄𝛾sat
𝐿0 + 𝜎( ̄𝛾sat − ̄𝛾onset) ̄𝛾 ≥ ̄𝛾sat

, (B.1)

where the fitted parameters are 𝐿0, 𝜎, ̄𝛾onset, and ̄𝛾sat. The function is not fitted over all
the range of values but only up to the point where 𝐴𝑉𝑦

reaches a maximum or a plateau,
since the function 𝑓 is not meant to capture the variations that occur after saturation. The
dashed black lines in the figure show the resulting function exp(𝑓) on top of the data (𝐴𝑉𝑦

,
blue solid lines) using linear scale (top row) and semilog scale (bottom row). Looking at
the bottom plots, the fits seems to obtain the correct slope for the linear part in all cases.
The correctness of onset strain ̄𝛾, corresponding to the first inflection point in 𝑓 , is difficult
to evaluate but the values shown here are plausible and the tendencies shown in Chapter 5
for different experiments are consistent with our interpretations (see Sec. 5.2.2). The fitted
strain ̄𝛾sat may be a little over estimated, but sufficient to provide a characteristic value, and
also we do not rely too much this value on our analysis of the experiments.

Overall, the previous analysis of the experimental data allows us to obtain some charac-
teristic values from the 𝐴𝑉𝑦

( ̄𝛾) and use them to compare large sets of experiments.

1Using the Levenberg-Marquardt method for non-linear least square fitting.



A. A. García − Doctoral thesis − December 15, 2025 Page 141 of 156

Appendix C

Résumé étendu en français

Dans cette thèse, nous avons réalisé des expériences avec des suspensions concentrées de
sphères de PMMA dans un fluide newtonien oscillant à l’intérieur de canaux étroits. Le but
de ces expériences était de faire progresser notre compréhension des suspensions de parti-
cules dans des écoulements d’intérêt pratique, tout en travaillant avec un système modèle
plus facile à manipuler, visualiser et interpréter que ses homologues naturels ou industriels.
Nous avons fait des observations à l’échelle des particules, capturant les trajectoires d’un
plus grand nombre d’entre elles, et avons utilisé ces informations pour déduire à la fois des
propriétés microscopiques et macroscopiques, comme la distribution des paires de particules,
et les champs de concentration et de vitesse.

L’un des principaux résultats de notre travail est une caractérisation approfondie d’une
instabilité d’écoulement survenant pendant les oscillations, et induisant un écoulement se-
condaire en plus de l’écoulement principal oscillatoire. L’effet cumulatif de cet écoulement
secondaire peut moduler la concentration des particules le long du canal en un motif pério-
dique de bandes orthogonales à la direction de l’écoulement (voir Fig. C.1), observé dans des
expériences réalisées précédemment dans nos laboratoires (Roht 2017).

Dans des espaces étroits, comme les canaux que nous avons utilisés, l’écoulement est
généralement laminaire à moins qu’un obstacle ne soit présent, et l’écoulement secondaire
induit par l’instabilité pourrait avoir des applications pratiques accélérant le mélange des
particules et des solutés dans de tels espaces. De plus, une compréhension plus approfondie
du mécanisme derrière l’instabilité pourrait contribuer à la modélisation de comportements
transitoires plus généraux dans les suspensions.
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Figure C.1: Motif typique de bandes perpendiculaires à la direction principale de l’écoulement (𝑥)
observé dans des expériences avec des écoulements oscillatoires de suspensions à l’intérieur de cellules
de Hele-Shaw. L’intensité variable correspond à différentes concentrations de particules.

C.1. Méthodes

Nous avons utilisé des fluides composés de mélanges d’eau et de deux autres composants, avec
les proportions ajustées pour correspondre à la densité du fluide et à l’indice de réfraction
avec ceux des particules. La correspondance de densité a rendu les particules neutres en
flottabilité, évitant la sédimentation, tandis que la correspondance de l’indice de réfraction
était nécessaire pour rendre la suspension transparente et permettre de voir à l’intérieur. Des
particules de diamètres 2𝑎 de 40µm et 85µm ont été utilisées dans des expériences séparées,
avec des résultats cohérents entre elles, bien que les plus grandes aient permis d’étudier la
distribution des particules en beaucoup plus de détail. Les deux ensembles de particules
étaient suffisamment grands pour être considérés comme non browniens et non colloïdaux,
c’est-à-dire avec des effets négligeables du mouvement brownien et des forces interparticulaires
à courte portée, en dehors de ceux médiés par le fluide ou les contacts solides. Dans les
suspensions résultantes, la fraction 𝜙bulk du volume total occupé par les particules variait
entre 0,2 et 0,4.

Les suspensions ci-dessus ont été utilisées pour remplir des canaux transparents de lon-
gueur 150mm, et de sections transversales rectangulaires de largeur 𝑊 et d’épaisseur 2𝑏. La
plupart des expériences ont été réalisées dans des canaux avec 𝑊 = 10mm et 2𝑏 = 1mm
ou 2mm ; les grands rapports d’aspect 𝑊/(2𝑏) font que la géométrie ressemble à deux plans
infinis séparés par un petit espace 2𝑏, c’est-à-dire une cellule de Hele-Shaw. Nous avons éga-
lement exploré d’autres tailles pour comprendre l’influence du rapport d’aspect 𝑊/(2𝑏) et du
rapport 𝑏/𝑎 de l’espace aux dimensions des particules. Une fois tout mis en place, nous avons
utilisé une pompe à seringue connectée au canal pour faire osciller la suspension en utili-
sant des formes d’onde carrées sans déplacement net après chaque cycle. Pendant la première
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moitié de chaque oscillation, la suspension parcourait une distance moyenne 𝐴, induisant
une déformation caractéristique de ̄𝛾0 = 𝐴/𝑏 et, pendant la seconde moitié, la suspension
retournait à sa position initiale. Habituellement, la vitesse de surface moyenne 𝑉s = 2𝐴/𝑇
restait constante à ≈ 1mm/s (Re < 1), et la période d’oscillation 𝑇 était utilisée pour changer
l’amplitude de déformation ̄𝛾0 entre 2 et 24 dans différentes expériences.

Nous avons utilisé la fluorescence et une feuille laser pour observer les particules dans une
fine tranche le long de la longueur et de l’épaisseur des canaux, la tranche étant située au
milieu de la largeur. Ainsi, nous pouvions voir comment les particules oscillaient le long de la
longueur (𝑥 direction) et également observer tout déplacement transversal dans la dimension
la plus confinée (l’épaisseur 2𝑏, 𝑦 direction). Pendant chaque expérience, nous avons enregistré
des vidéos de cette vue et les avons traitées pour détecter et suivre les particules visibles dans
les images. Par un traitement ultérieur, nous avons obtenu les champs de fraction volumique
locale 𝜙 et de vitesse (𝑉𝑥, 𝑉𝑦) pour les particules dans le plan d’observation (𝑥, 𝑦). La figure C.2
montre un diagramme simplifié de la configuration expérimentale.

𝑥

𝑦

𝑧

2𝑏
Canaux

𝑊Feuille
laser

Sphères de PMMA
2𝑎

Écoulementoscillatoire

Caméra

Figure C.2: Diagramme simplifié de la configuration expérimentale.

C.2. Résultats

Dans une expérience typique, la distribution initiale des particules n’est pas uniforme, au
lieu de cela, la fraction volumique locale 𝜙 est plus grande au centre de l’épaisseur (𝑦 = 0)
qu’à proximité des parois (𝑦 = ±𝑏), conséquence de la migration des particules induite par le
cisaillement survenant lors de la mise en place préliminaire (par exemple, le remplissage du
canal). La migration peut continuer pendant les premières oscillations, augmentant encore
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plus la fraction volumique 𝜙cen au centre de l’interstice, comme le montre la courbe verte dans
la Fig. C.3. Pendant ce temps ( ̄𝛾 ≲ 200 dans la Fig. C.3), la fraction volumique locale 𝜙 varie
uniquement à travers l’épaisseur (𝑦 direction) avec des profils 𝜙(𝑦) qui augmentent des parois
vers le centre, et le champ de vitesse est principalement laminaire (𝑉𝑦 ≈ 0, 𝑉𝑥 indépendant de
𝑥) avec des profils 𝑉𝑥(𝑦) qui deviennent progressivement plus émoussés au centre (par rapport
aux profils paraboliques d’un fluide newtonien) à mesure que la fraction volumique en vrac
𝜙bulk est augmentée, en accord avec d’autres auteurs (Lyon and Leal 1998a; Rashedi et al.
2020).
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Figure C.3: Évolution temporelle de trois variables importantes suivant l’état de la suspension pen-
dant les oscillations, pour une expérience typique utilisant les particules de diamètre 2𝑎 ≈ 85 µm.
Courbe verte, axe de gauche : rapport 𝜙cen/𝜙avg entre la fraction volumique des particules au centre
de l’interstice du canal et la moyenne sur celui-ci. Courbe violette, axe de droite : amplitude 𝑉𝑦,cen,ac
de la perturbation dans la composante de vitesse transversale normalisée par la vitesse longitudinale
moyenne 𝑉avg du flux principal. Courbe orange en pointillés, axe de droite : amplitude 𝑦𝜙max,ac de la dé-
formation de la bande centrale de haute concentration de particules, normalisée par la demi-épaisseur
du canal 𝑏 et multipliée par 0,1 pour permettre une comparaison directe avec le 𝑉𝑦,cen,ac/𝑉avg. Notez
que 𝜙avg ≈ 𝜙bulk = 0,4, et 𝑉avg ≈ 𝑉s ∼ 1mm/s.

Ensuite, nous observons l’apparition du comportement instable : un écoulement secon-
daire apparaît, caractérisé par des cellules de recirculation de directions alternées le long de
la longueur du canal (𝑥 direction), avec une longueur d’onde 𝜆 ≈ 7 𝑏 (voir Fig. C.4). Cet
écoulement secondaire est présent en plus de l’écoulement oscillatoire principal qui le trans-
porte d’avant en arrière, ce qui le fait changer de direction à chaque fois que l’écoulement
oscillatoire s’inverse. Nous caractérisons son amplitude 𝐴𝑉𝑦

à partir de mesures de la compo-
sante de vitesse transversale 𝑉𝑦 près du centre de l’interstice, et observons qu’elle augmente
avec le temps avec une forme approximativement exponentielle jusqu’à ce qu’elle sature à des
valeurs de l’ordre de 0,02 𝑉avg (voir la courbe violette dans la Fig. C.3).
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Figure C.4: Champ de vitesse correspondant à l’écoulement secondaire observé lorsque l’instabilité
est pleinement développée. Il s’agit de l’une des deux composantes dans lesquelles nous séparons le
champ de vitesse total, avec l’écoulement laminaire principal qui pointe vers la gauche à ce moment-là.

Au fil du temps, l’effet cumulatif de cet écoulement modifie la distribution des particules,
déplaçant les particules hors du centre de l’interstice (voir la diminution de 𝜙cen/𝜙avg dans
la Fig. C.3) et produisant un motif de type onde dans la fraction volumique 𝜙 avec la même
longueur d’onde 𝜆 (voir Fig. C.5), et qui est également transporté d’avant en arrière par
l’écoulement principal. Une étude de l’amplitude 𝐴𝜙 de ce motif (voir la courbe orange en
pointillés dans la Fig. C.3) montre une évolution dans le temps presque identique (dans les
limites d’un facteur d’échelle constant) à celle de 𝐴𝑉𝑦

, correspondant à l’écoulement secon-
daire. Une différence peut être observée peu après une inversion de flux : le motif dans 𝜙
n’est pas affecté par celle-ci, tandis que l’écoulement secondaire change de direction et dimi-
nue brusquement son amplitude, pour finalement, retrouver sa valeur d’avant l’inversion après
que suffisamment de déformation ait été accumulée. Ce dernier comportement est similaire à
ceux observés pour la microstructure et le taux de cisaillement local après une inversion.

𝑥

𝑦

2𝑏
=

2m
m

Figure C.5: Motif de type onde formé par les particules (disques noirs) lorsque l’instabilité est
pleinement développée.

Des études supplémentaires en faisant varier les paramètres expérimentaux (principale-
ment 𝜙bulk et ̄𝛾0) ont montré que l’instabilité croît plus rapidement avec l’augmentation de la
fraction volumique en vrac 𝜙bulk, suggérant que le mécanisme est lié aux interactions irréver-
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sibles des particules, presque certainement par des contacts solides. D’autre part, à mesure que
l’amplitude de déformation ̄𝛾0 diminue, l’instabilité croît de plus en plus lentement, jusqu’à
ce qu’une amplitude seuil ̄𝛾𝑐 ∼ 1 soit atteinte. Pour ̄𝛾0 < ̄𝛾𝑐, l’écoulement est stable sans
vitesses transversales significatives ou variations de 𝜙 le long de 𝑥, en accord avec la réver-
sibilité observée précédemment dans les suspensions sous oscillations de faible amplitude. À
l’autre extrême, pour des amplitudes suffisamment grandes ̄𝛾0, la déformation accumulée ca-
ractéristique ̄𝛾onset au-dessus de laquelle l’instabilité devient clairement apparente augmente
avec ̄𝛾0, suggérant que les écoulements stationnaire ( ̄𝛾0 → ∞) sont également stables.

Les interactions irréversibles entre particules voisines sont connues pour induire une mi-
crostructure anisotrope qui a une forte influence sur les contraintes et la viscosité de la
suspension, et qui se réorganise après chaque inversion de flux. Puisque l’instabilité peut être
une conséquence de l’effet cumulatif de tels processus irréversibles après plusieurs inversions
de flux, nous avons caractérisé la microstructure juste avant l’apparition de l’instabilité, entre
les inversions successives et à travers l’interstice du canal.

Dans l’état quasi-stationnaire atteint avant une inversion, nous avons observé des fonctions
de distribution de paires 𝑔(𝑟𝑥, 𝑟𝑦) avec une probabilité élevée de paires de particules presque
en contact (𝑟/𝑎 ≈ 2) sauf dans les quadrants d’extension où les paires se séparent en moyenne
(voir le premier graphique de la Fig. C.6). Nos mesures locales de 𝑔(𝑟𝑥, 𝑟𝑦) à travers l’interstice
sont en bon accord avec les mesures obtenues dans des conditions uniformes par Blanc,
Lemaire, et al. (2013), sauf près de la paroi et près du centre de l’interstice, où les effets
respectifs de la confinement et du très faible taux de cisaillement prennent le dessus. Après
une inversion de flux, les quadrants d’extension changent de position et cette structure se

𝑦/𝑏 ≈ 0,30, 𝜙 ≈ 0,45
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Figure C.6: Fonctions de distribution de paires 𝑔(𝑟𝑥, 𝑟𝑦) à différents instants avant (premier gra-
phique) et après (cinq autres graphiques) une inversion de flux survenant lorsque 𝛾 = 0, où 𝛾 est la
déformation accumulée localement à la position 𝑦 du centre de la bande considérée à travers l’interstice
du canal. Les flèches blanches indiquent les directions de cisaillement locales avant et après l’inversion
de flux.
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réorganise en une structure miroir horizontalement correspondante à la nouvelle direction
de flux (voir Fig. C.6). Ce processus se produit alors que la suspension est soumise à une
déformation avec un taux de déformation local ̇𝛾 qui augmente de zéro, au centre de l’interstice
(𝑦 = 0), à un maximum près des parois (𝑦 = ±𝑏).

Bien que la déformation accumulée nécessaire pour réorganiser la microstructure diminue
avec la fraction volumique locale 𝜙, qui à son tour diminue vers les parois, les variations de
̇𝛾 à travers l’interstice sont beaucoup plus importantes et, par conséquent, il existe un état

transitoire après une inversion de flux lorsque la microstructure s’est entièrement réorganisée
près des parois mais, près du centre de l’interstice, le processus est encore en cours.
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