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Abstract

We study experimentally at the macroscopic and microstructure scale a dense suspension of non-
Brownian neutrally-buoyant spherical particles experiencing periodic reversals of flow at constant rate
between parallel plates and tracked individually. We first characterize the quasi-steady state reached at
the end of half periods. The volume fraction of particles increases from the walls to the center as a result
of migration induced by the nonuniform strain rate. Except very close to the walls and the center, the
particle pair distribution is fore-aft asymmetric with depletions of pairs in the extensional quadrants,
similar to that reported for shear flows of same volume fraction as the local one. The dynamics of
the periodic rearrangements occurring after each flow reversal are characterized by a microstructure
tensor component. The relaxation time characterizing the reorganization increases from the walls to
the center due to the inhomogeneous strain rate. On the other hand, the local accumulated strain
required for this reorganization decreases with the volume fraction, like for viscosity measurements
in uniform strain rate conditions. However, the variation of the microstructure with the accumulated
strain is faster than that of the viscosity, showing the complementarity of the two measurements.

1 Introduction

The spatial distribution of spherical particles
suspended in a viscous fluid of the same den-
sity becomes anisotropic when the suspension
is subject to straining flows. This anisotropy in
the shear-induced microstructure, was first pro-
posed to explain a transient response observed
in suspensions under shear reversal in Stokes
flows [1, 2]. The anisotropic microstructure is
typically attributed to the presence of solid con-
tacts between neighboring particles [3], although

any other irreversible interaction could in princi-
ple produce similar effects [4]. These solid con-
tacts also account for a significant fraction of
the suspension viscosity: when the flow direction
is inverted, they momentarily disappear, result-
ing in a sharp decrease of the viscosity of the
suspension [5, 6]. The particles then reorganize
according to the new flow direction, solid contacts
form again and the viscosity recovers its mag-
nitude [7]. The shear-induced microstructure of
non-Brownian, neutrally-buoyant suspensions in
the limit of zero Reynolds number has been well
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characterized for steady flows with uniform shear
rate [8]. In contrast, studies of the suspension
microstructure in more complex flows of practi-
cal interest, such as Poiseuille channel flow, are
scarse [9]. In addition, no precise characterization
of the microstructure evolution of a Poiseuille flow
under flow reversal is available in the literature.

Therefore, in order to improve our understand-
ing of the suspension microstructure in flows with
nonuniform shear rate and its evolution under
flow reversal, we performe oscillatory channel flow
experiments in which we track individual particles
and determine the evolution of the microstructure.
Specifically, we prepare a concentrated suspen-
sion (40% by volume) of non-colloidal, neutrally-
buoyant spherical particles and make it flow at
low Reynolds numbers between parallel plates.
The shear-induced migration of particles produces
an inhomogeneous distribution across the gap,
with a particle volume fraction ϕ near the center
larger than near the walls [10–12]. We compare
the local microstructure obtained at different posi-
tions across the gap with results obtained in
uniform shear flow at the corresponding volume
fractions. We then consider the evolution of the
local shear rate and microstructure after each flow
reversal across the gap; their relaxation toward
steady state is compared to that of the viscosity of
a suspension of similar volume fraction in uniform
shear flows.

2 Experiments and data
analysis

2.1 Experimental setup and
procedure

We use polymethylmethacrylate (PMMA) spheres
of diameters 2a = 85± 5 µm suspended in a solu-
tion composed of 38.8% in weight (wt) of ammo-
nium thiocyanate (NH4SCN), 37.9%wt of glycerin
and 23.3%wt of water (similar to that proposed
in [13]). This solution matches both the density
(ρ = 1189Kg/m

3
) and refractive index of the par-

ticles at temperatures around 22°C, rendering the
particles neutrally buoyant and transparent. Rhe-
ological measurements with shear rates between
5 and 50 s−1 show that the fluid is Newtonian
within our experimental precision and of a viscos-
ity ηf ≈ 7.6mPa.s. The bulk volume fraction of
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Fig. 1 a) Schematic view of the experimental setup. b)
Typical image. Small region (≈ 3mm by 2mm) of a larger
image (≈ 19mm by 2mm). c) Representation of a pair of
particles and its relative position vector.

particles is ϕbulk = 0.40. Small amounts of fluores-
cent dye (rhodamine 6G) and surfactant are added
to the fluid, to enable the visualization of the par-
ticles and to avoid trapping air bubbles when the
particles are added to the solution, respectively.
The suspension is injected by a syringe pump and
completely saturates a transparent channel made
of PMMA with a length L = 200mm and a rect-
angular cross-section of width W = 10mm and
gap thickness 2b = 2.00 ± 0.05mm, approximat-
ing a flow between parallel plates (see schematic
view in Fig. 1). In order to visualize the spher-
ical particles, a laser beam (wavelength 532 nm)
is shaped optically into a plane sheet of thickness
≈ 25 µm. In the illuminated region, the dyed fluid
appears bright while the particles remain dark,
as seen in Fig. 1(b). The laser sheet cuts a cross
section in the middle of the channel and along its
length, as indicated in Fig. 1(a) together with the
position of a video camera recording the experi-
ments. The particles are detected and tracked in
the videos, extracting the instantaneous positions
of their centers, apparent radii and velocities.

In each experiment, the suspension is injected
slowly into an empty system to ensure repro-
ducible initial conditions. The channel length is
oriented vertically to prevent the entrapment of
bubbles. Note that, during this initial flow, some
shear-induced migration of the particles takes
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place across the gap of the channel and towards
its center. After the initial injection, we start the
recording, and turn on a programmable syringe
pump generating square-wave variations of the
flow rate, with period T = 24 s, as schematically
shown in Fig. 1(a). Experiments with four differ-
ent periods (16 s ≤ T ≤ 28 s) produced similar
results; however a full study of the influence of T is
not within the scope of this work. The peak abso-
lute flow rate Q0 = 24mm3/s corresponds to a
maximum longitudinal velocity Vmax = 1.59mm/s
at the center of the channel and corresponds to a
Reynolds number Re ≃ ρbVmax/ηf = 0.4. In the
following, we use dimensionless variables: the coor-
dinate across the gap is normalized by b = 1mm,
that is −1 ≤ y ≤ 1, the velocities by Vmax, and
the time by b/Vmax = 0.629 s.

As the square-wave oscillatory flow starts, the
particles continue to migrate towards the center
during the first ≈ 6 oscillations. During oscilla-
tions 7 to 9, the macroscopic particle distribution
is close to the steady-state ones observed in pre-
vious works, and it is only during this time
range that we perform the analysis presented here.
Afterwards, the flow becomes unstable with the
growth of an x-periodic transverse velocity com-
ponent Vy that distorts the particle distribution
both along x and y [14, 15].

The particle coordinates obtained by tracking
are used to compute characteristic parameters of
the flow. First, the cross section captured in the
images is divided into rectangular bins of equal
size, where each bins covers a segment across the
gap (y direction). The local volume fraction ϕ(y) is
then estimated by counting particles inside these
rectangular bins and assuming that the average
value matches the bulk volume fraction ϕbulk =
0.40 [Fig. 2(a)]. The longitudinal velocity profile
Vx(y) is determined by averaging the displace-
ment of individual particles inside each bin during
a short time lapse. Using a numerical differen-
tiation scheme, we also compute the strain rate
γ̇ = ∂Vx/∂y across the gap [Fig. 2(b)].

Both profiles present slight asymmetries due
to the sensitivity of the visualization technique
to small refractive index mismatches or hetero-
geneities, progressively distorting the laser light
as it passes through layers of spheres from top to
bottom. This is specially evident in the bottom
half [see Fig. 1(b)], and for this reason, all further

analysis will be performed using only data from
the top half of the channel (0 < y < 1).

In order to improve the statistics, the follow-
ing averaging procedures were used. First, to take
advantage of the symmetry of the flow, we divide
each oscillation period in two parts, correspond-
ing to positive and negative directions of the mean
flow. Then, for the half period with positive flow,
we reflect the coordinates of the particles along
the flow direction such that the observed strain
rate in the top region is always positive. Then,
to obtain quasi-steady state results (Sec. 3.1), we
perform a time average over the last 25% of each
half period. Results obtained over longer times
present distortions, while over shorter times, they
are equivalent regarding their key features, but
noisier. On the other hand, to obtain the evolution
with time following a flow reversal (Sec. 3.2), we
perform an ensemble average of several half peri-
ods. In both cases, the results are averaged over
nine independent experiments.

2.2 Microstructure analysis

A key tool to characterize the microstructure of
the suspension, especially short-range correlations
of the position of the particles, is the pair dis-
tribution function (pdf). First, for each particle,
we determine the relative position vector in the
(x, y) plane of all the other particles [r = (rx, ry)
in Fig. 1(c)]. After binning the (rx, ry) plane we
define the pdf g(rx, ry) as

g(rx, ry) =
N(rx, ry)

nS N1 ∆rx ∆ry
, (1)

where ∆rx = ∆ry is the size of the bins, N(rx, ry)
is the number of pairs in the bin centered at
(rx, ry), N1 is the total number of particles in
the region of interest, and nS = N1/A is the
corresponding surface number density in a region
of area A. An isotropic distribution would corre-
spond to g = 1 everywhere.

Since the volume fraction (and therefore the
pdf) vary across the channel, the top half of the
channel is divided into twelve evenly distributed
thin strips along the flow direction in which the
pdf is computed locally. For each particle inside a
given thin strip, all pairs are taken into account,
even if the second particle is located outside the
strip.
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Fig. 2 Quasi-steady state (qss) profiles. a) Particle volume
fraction profile ϕ(y). b) Strain rate, γ̇(y); inset: velocity
profile Vx(y).

For simplicity and improved comparison to
previous results, we only consider particles located
approximately in the same plane of observation.
Specifically, given that spherical particles with
their centers outside of the laser sheet will appear
in the images as disks with smaller radii, only
those with measured radius> 0.8 a are considered.

3 Experimental results

3.1 Quasi-steady state

Let us define as quasi-steady the state of the sus-
pension at a long enough time after each flow
reversal (a more precise definition will be discussed
later), and before the next one.

Quasi-steady state (qss) profiles of the vol-
ume fraction, the velocity and the strain rate are
shown in Figs. 2(a-b). The volume fraction is max-
imum at the center and minimum near the walls
of the channel, as a result of shear-induced migra-
tion [10, 11]. Considering only the top half of the
channel we can establish a unique correspondence
between the position across the channel y and the
local volume fraction ϕ of the suspension. Another
important feature is that the velocity is maximum
at the center of the channel and exhibits a blunt
profile. Accordingly, the shear rate is very small
in the vicinity of the center and maximum at the
walls. Note that the transverse variations of the
viscosity η(y) are related to γ̇, y, and the shear

stress τw at the wall by:

η(y) = τw y/γ̇(y). (2)

This classical macroscopic relation has been
applied to suspensions where the solid phase can
induce non-Newtonian behaviors [16–19]. Given
the negligible inertial effects, we assume there-
fore that this expression is valid at all times,
except during the reversal when the pump is still
changing the flow direction.

Figures 3(a-c) show the pair distribution func-
tion (pdf) computed at three different positions
across the gap. Note that, unlike y, the dis-
tance between particles (rx, ry) was made non-
dimensional with the radius of the particles a.
In all cases, the pdf is larger in the vicinity of
the circle r = 2 (see color scale), indicating the
large probability of particles forming pairs nearly
in contact. Furthermore, there is a depletion of
pairs in the extensional quadrants (rxry > 0),
where the particles are separating on average.
This fore-aft asymmetry can be explained by irre-
versible interactions between particles, generally
attributed to direct solid contacts due to parti-
cle roughness [7, 20, 21]. The pdf’s measured very
close to the wall or near the center display differ-
ent caracteristics as can be seen in the appendix
(Fig. A1).

The location and thickness of the rings of high
pair probability in Figs. 3(a-c) are determined
quantitatively from the radial pair distribution
g(r), obtained like g(rx, ry) but binning the data
solely over r = (r2x + r2y)

1/2. Everywhere, g(r) dis-
plays a first peak and global maximum at rmax ≈
2.16, with a width at half height ∆rmax ≈ 0.32.
The variations of g(r) are shown in the appendix
(Fig. A2).

In order to compare the fore-aft asymmetry
observed in the pair distribution function with
available results, we calculate the angular distri-
bution g(θ) of pairs near contact by binning the
polar angle [see Fig. 1(c)] and considering only
close pairs, specifically those for which |r−rmax| ≤
∆rmax/2 (i.e. 2 ≤ r ≤ 2.32).

Figures 3(d-f) show the angular distribution
of pairs near contact in the same three positions
across the channel as in Figs. 3(a-c). We present
separately the angular distribution of pairs above
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Fig. 3 Left (a,b,c): pair distribution function. Right
(d,e,f): corresponding near-contact angular distributions
g(θ). Each row corresponds to a different value of the dis-
tance across the channel gap and the volume fraction. The
light colored bands represent the pointwise standard devi-
ation from the nine experiments averaged. Unlike y, rx and
ry are normalized by the particle radius a. ( ): 0 < θ < π;
( ): −π < θ < 0 (plot angle shifted by π to display over-
lap). ( ): Couette rheometer measurements [8].

[ry > 0, ( )] and below [ry < 0, ( )] the ref-
erence particle, to account for possible effects of
gradients of both ϕ and γ̇ across the channel.

In plots (d) and (e) (ϕ ≈ 0.38 and 0.46), we
observe a clear dip around θ = π/4 corresponding
to the depletion of pairs in the extensional quad-
rant observed in plots (a) and (b), respectively.
A shallower decrease in the angular distribution
is observed around θ = 3π/4. In both cases, the
measured angular distribution (particularly for
ry > 0) agrees well with that obtained by Blanc
et al. [8] in uniform shear flows with similar vol-
ume fractions. In plot (f) (ϕ ≃ 0.50), the depletion
of pairs is less significant, particularly for ry < 0.
The measured angular distribution for ry > 0 also
agrees with that reported by Blanc et al. [8] for a
similar volume fraction.

In the range of volume fractions considered,
the measured angular distributions of pairs near
contact are similar to those found for homoge-
neous shear flows at similar volume fractions,
particularly for ry > 0. The small discrepancies
between profiles obtained above and below the ref-
erence particle may result from strain rate and
volume fraction gradients present in channel flows.
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3.2 Response to flow reversal

The results presented up to this point correspond
to the quasi-steady state achieved after enough
strain has been accumulated without any change
of the flow direction. In this section, we study
how this state is recovered after a flow reversal.
A sensitive measurement of the evolution of the
particle structure is that of the strain rate γ̇(y, t).
In the inset of Fig. 4(a), we compare γ̇(y) at
time t = 1 after reversal with the quasi-steady
state profile γ̇qss(y). These curves are definitely
different, meaning that the local viscosity η(y) has
changed. Note that no such dependence on time
has been observed for ϕ(y). The value of η(y) is
related to γ̇, y, and the shear stress τw at the
wall by Eq. (2); we can therefore gain insights
into η(y) from the ratio γ̇qss(y)/γ̇(y, t), shown in
Fig. 4(a) as a function of the time t after the
reversal. We observe that, except very close to the
wall, the inverse of the strain rate drops down and
then relaxes, with a minimum value that becomes
smaller and is reached later as y decreases (and
thus ϕ increases). Similar curves, but for η, were
obtained in previous rheometry experiments [1, 5]
and simulations [7] with uniform shear reversal:
the magnitude of the drop also increases with the
volume fraction ϕ. In order to separate the influ-
ences of the strain rate and the volume fraction,
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we use the local accumulated strain

γ(y, t) =

∫ t

0

γ̇(y, t′) dt′ (3)

to plot γ̇qss/γ̇ in Fig. 4(b). As y decreases and
ϕ increases, the strain γ required to reach the
minimum and recover the final value decreases,
particularly near the center, in qualitative agree-
ment with previous observations for the viscosity
at different ϕ’s [5, 7].

These transient variations of the viscosity and
the strain rate can be explained by a rearrange-
ment of the particles occurring not at a macro-
scopic scale [ϕ(y) is almost unchanged], but in the
microstructure. Looking at the pdf of Figs. 3(a-c),
it is expected that each reversal of the flow direc-
tion prompts the particles to reorganize and form
a rx-mirrored pdf, if enough shearing is allowed.
This mirroring is equivalent to a transformation
θ → π − θ in the angular distribution g(θ).

This process is visualized in the false-color
maps of Fig. 5 where the evolution of g(θ) during
one half period is shown for three different strips
across the gap (and, therefore, different ϕ’s). See
also the sequence of curves g(θ) in the appendix
(Fig. B3). In each map, the angles correspond-
ing to dips of the pair probability [blue streak in
(a,b), green in (c)] change to their π-complement
after enough local strain γ has accumulated. As
ϕ increases (from top to bottom in Fig. 5), the
transition value of γ decreases, while the corre-
sponding time duration increases, following the
same trend as γ̇qss/γ̇ in Fig. 4. Also, the amplitude
of the variations of g(θ) decreases as ϕ increases.

One observes in Figs. 5 that half maps
obtained above (0 < θ < π) and below the refer-
ence particle (−π < θ < 0) are not identical as
also noted in the steady case. This is particularly
visible at the two highest mean volume fractions
[cases (b) and (c)]. In these two cases, the ampli-
tudes of the variations of g are larger above the
reference particle while the value of γ correspond-
ing to the transition is lower. This follows the
global trend of variation of these two quantities
with y (and the local shear rate) between strips (b)
and (c).

In order to characterize quantitatively the time
variation of the microstructure across the gap,
we use, following Gillissen and Wilson [22], the
xy-component of the planar projection of the

0 0.1 0.2 0.3 0.4
γ

−1

−0.5

0

0.5

1

θ
/
π

1

2

3

g
(θ
)

c)

0.08 < y < 0.17, φ ≈ 0.50

0 0.2 0.4 0.6 0.8 1 1.2 1.4
γ

−1

−0.5

0

0.5

1

θ
/
π

1

2

3

g
(θ
)

b)

0.17 < y < 0.25, φ ≈ 0.46

0 1 2 3 4 5 6 7 8 9
γ

−1

−0.5

0

0.5

1

θ
/
π

1

2

3

g
(θ
)

a)

0.42 < y < 0.50, φ ≈ 0.38

Fig. 5 Color map of the variations of the angular pair dis-
tribution in three strip across the gap of different ϕ’s versus
the local accumulated strain γ and the angle θ. Reversal
occurs at γ = 0 and the time lapse shown by all three
graphs is a half period (12 s).

microstructure tensor:

A2D
xy =

〈
rxry

r2x + r2y

〉
pairs

=
1

2
⟨sin(2θ)⟩pairs . (4)

Averaging is performed over the same pairs as for
the angular distributions. This quantity is useful
to characterize the mean orientation of the pairs of
particles and to use its variation with the strain to
characterize the evolution of the microstructure.
In particular, A2D

xy changes sign following a shear
reversal.

Figure 6(a) shows the variation of A2D
xy versus

y at different times before and after the flow rever-
sal. Consider first a flow in the x > 0 direction
before the reversal (• symbols): A2D

xy is positive for
all y′s due to the depletion of pairs for rxry < 0, in
the extensional quadrant (Figs. 3 and 5). A2D

xy is
smaller near the center because of the smaller vari-
ations of the pair function seen in Fig. 3(f). After
the reversal, A2D

xy starts to decrease toward nega-
tive values after a delay shorter near the wall (y =
1) than near the center (y = 0). The final profile
when a quasi-steady state has been reached (▼),

6



−0.08

−0.04

0

0.04

0.08

0 0.2 0.4 0.6 0.8 1

A
2
D

x
y

y

t

−0.8

0.53

1.1

2.7

18

a)

−0.08

−0.04

0

0.04

0.08

0 1 2 3 4

−0.08

0

0.08

0 5 10 15A
2
D

x
y

γ

y

0.79

0.37

0.29

0.21

0.13

b)

A
2
D

x
y

t

Fig. 6 a) Microstructure parameter A2D
xy versus y at dif-

ferent times t since flow reversal, between −0.8 (• top) and
18 (▼ bottom). b) Evolution of A2D

xy as a function of the
local accumulated strain γ, after flow reversal at γ = 0.
The curves correspond to different distances across the gap.
Inset: same curves, but as a function of time.

is the opposite of the initial one, within the exper-
imental uncertainties. Bear in mind that, in the
half of the gap not shown (−1 < y < 0), the shear
rate has the opposite sign and the microstructure
evolution is similar but inverted.

Variations of A2D
xy in selected positions across

the gap are shown in Fig. 6(b) as a function
of the local strain γ (main figure) and the time
(inset). We see again that the transition occurs
at a smaller γ toward the center where the vol-
ume fraction is larger; instead, for plots versus t,
the variation is much faster near the walls where
the local shear rate is larger, showing its very
strong influence. For very small local deforma-
tions, 0.07 ≲ γ ≲ 0.25 depending on the distance
y, A2D

xy remains roughly constant and, then, often
drops abruptly [see also g(θ) in Fig. 5].

After flow reversal, the particles contacts dis-
appear and start to reappear along with the
microstructure asymmetry. For each strip across
the gap, we determine the strain γ0 for which
A2D

xy = 0, corresponding to the middle point in
this process. Figure 7(a) displays γ0 versus the
local particle volume fraction ϕ of the suspension
(◦ symbols). As expected from homogeneous shear
flows studies [5, 7], γ0 decreases with ϕ, reflecting
an increase in the rate of particles interactions.

Furthermore, the critical strain γc for the loss of
reversibility in homogeneous shear flows [23] has
similar values, confirming a close connection with
the microstructure reorganization.

Figure 7(b) compares the variations with γ
after a shear reversal of the microstructure and
the viscosity. The plot includes normalized values
of −A2D

xy ( ) and 1/γ̇ ( ) for y ≈ 0.29 (ϕ ≈ 0.43)
in our work and of η ( ) from rheometry mea-
surements at a similar ϕ [5]. While 1/γ̇ varies in
a similar way as η, −A2D

xy increases much faster.
Similarly, in Fig. 7(a), the strain γ0.5 needed to
reach 50% of the steady viscosity is larger than γ0
in the range of ϕ’s investigated.

The viscosity of a suspension includes indeed
two contributions: the hydrodynamic stress and
the contact forces between particles which do not
vary in the same way with the strain after a flow
reversal [7]. Just after the reversal, the contact
contribution disappears while the hydrodynamic
one increases as the particles separate from each
other. As the distance between particles increases,
both the hydrodynamic contribution and the total
viscosity decrease until the contact contribution
increases when particles contacts form again. The
fact that A2D

xy seems to recover with less strain
than the viscosity (and 1/γ̇) suggest that the vis-
cosity is more sensitive than A2D

xy to the formation
of contacts, since these take place at a distance
scale much smaller than the one we can observe.

4 Conclusion

We studied the microstructure developed by a
suspension of spheres experiencing periodic flow
reversals in the gap between parallel plates. The
time between two successive reversals is large
enough to assume that the suspension reaches a
quasi-steady state between two reversals, except
in the vicinity of the center where the strain rate
is very low. Outside this region, particle pair dis-
tributions measured before each reversal (Figs. 3)
correspond well to those for homogeneous shear
flows of same volume fractions ϕ [8]. The distri-
butions are anisotropic with a higher probability
of pairs in near contact and a depletion of them
in the extensional quadrants, marking a fore-
aft asymmetry of the microstructure in the flow
direction.

After a flow reversal, the parameter A2D
xy char-

acterizing quantitatively the organization of the
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Fig. 7 a) ϕ dependence of local strains γ0, γ0.5, γc char-
acterizing reorganization in different channel and Couette
flows in the present work and previous ones [8, 23]. The
error bars for γ0 correspond to the standard deviation of
the values calculated from each experiment individually. lb)
variations with γ during and after reversal of −A2D

xy [( ),
right axis], 1/γ̇ [( ), left axis] and η [( ), left axis][5].
All data are normalized to their final values.

suspension reaches a new quasi-steady-state value
faster near the walls than at the center. This
implies a strong influence of the local strain rate
tested by plotting A2D

xy versus the local accu-
mulated strain γ: these curves are indeed less
dispersed but relax faster as ϕ increase toward
the center. This relaxation is, in particular, faster
than that of the viscosity of comparable sheared
suspensions after a flow reversal.

The fore-aft asymmetry can be related to the
first normal stress difference [24–28], and the
fact that we observe inhomogenenous relaxation
times for A2D

xy across the gap may help explain
some phenomena observed during oscillations in
pressure-driven flows, like instabilities [14, 15] or
inverse migration [29].

The information provided by visualization
methods like ours represents a promising tool to
understand the rheology of spatially varying sus-
pension flows, where local stress measurements
are difficult. In particular, the components of
the microstructure tensor calculated from experi-
mental data can complement other measurements
like viscosity or irreversibility thresholds: indeed,
the parameter A2D

xy essentially reflects the fore-aft
asymmetry of the spatial distribution of the parti-
cles while other parameters depend in addition on
hydrodynamic, contact or other forces [22, 30, 31].

In future experiments, we plan to vary the bulk
volume fraction and the oscillation amplitude. Of
special interest is the onset of irreversible behavior
above a threshold amplitude, and its consequences
for particle and fluid diffusivity [23, 32, 33].
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Appendix A PDF on the
extremes and
radial
distributions

The pdf’s determined at different distances y
across the gap display similar characteristics
(Figs. 3), with the exception of those close to
the wall (0.92 < y < 1.00) and at the center
(0.00 < y < 0.08), shown in Fig. A1. In the first
case, the high probability of pairs with ry ≈ 0 and
negligible for pairs with ry ≳ 1 suggests that the
particles align on the wall, in agreement with the
particle layering observed in the volume fraction
profiles from previous works [34, 35]. In the sec-
ond case, pairs remain mostly in near contact, but
uniformly distributed with the angle. This latter
result can be explained by the strain accumulated
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after flow reversal which is lower than that needed
for an asymmetric organization. Note the faint sec-
ondary ring of radius ≃ 4 near the border of the
map.
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Fig. A1 Pair distribution functions g(rx, ry) in strips
located on the wall (a) and at the center (b).

Figure A2 displays the variations of the radial
pair distribution g(r) with the r =

√
r2x + r2x

for different distances y corresponding to differ-
ent volume fractions ϕ. The peak height increases
with the volume fraction, implying that a larger
proportion of the pairs are in near contact. The
secondary peak near r/a ≃ 4, already visible as a
faint ring in Fig. A1, appears clearly for ϕ = 0.5
in Fig. A2.
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Fig. A2 Radial pair distribution g(r) for three different
strips across the gap.

Appendix B Time variation
of the angular
distribution

Figure B3 is an alternative representation of some
of the data shown in Fig. 5(b). Similar observa-
tions can be made: given enough straining after
reversal, the dips of minimum probability change
to π-complementary angles, and for intermediate
strains (γ = 0.40 and 0.55 in this case), g(θ) can
be almost symmetrical with respect to θ = 0.
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Fig. B3 Sequence of curves g(θ) for different local accu-
mulated strains γ before and after flow reversal at γ = 0.
Data obtained in strip 0.17 < y < 0.25 corresponding to
Fig. 5(b).
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